Proceedings of the 2003 Conference of the Australian LstguSociety 1

Glue logic vs. Spreading Architecture in LFG

AVERY D. ANDREWS
The Australian National University
Avery. Andrews@anu.edu.au

1 Introduction

Although the f-structures of LFG look like an intuitivelyadr representation of many aspects
of meaning, it has proved somewhat more difficult than onehtrhigve expected to connect
them to conventional logical forms, over which entailmamd ather semantic properties and
relations can be defined by standard methods. In this pap#rpresent what | believe to
be a relatively easy to use formulation of the ‘glue logichegach (Dalrymple 1999, 2000),
and then show how to eliminate the ‘restriction projectiarsed by Andrews and Manning
(1993, 1999) in their analyses of scoping modifiers and cermptedicates, allowing the
analyses to work with the conventional ‘locational projecs’ of Kaplan (1995).

The presentation is based on recent work by de Groote (1888)Perrier (1999), which
allows glue-logic deductions, which linguists sometimad fjuite difficult to understand, to
be replaced by a proof-net-based technique which | belebe teasier to follow, because it
employs totally obviously monotonic processes of link &#ddiand assignment of values to
(sub-)formulas, instead of deductive combinations anasfi@mations of premises, which
are easy to lose one’s way in. | suspect that the uptake oflglie by working linguists is
significantly impeded by the difficulties of understandigo anything that offers a chance
of making it easier is worth trying. This proof-net techregavolves no substantive change
in the theory, only the methods for calculating its results.

The proposed elimination of restriction projections wdlirever require a substantive change,
the elimination of the ‘semantic projection’. Rather thass@ciate semantic information
with a single semantic projection, it will be associatedhbwith the f-structure and an ‘a-
structure’ along the lines of Andrews and Manning (1999)] #re capacity of glue-logic
to integrate information present at different locationd Wwe seen to make Andrews and
Manning’s use of restriction projections unnecessary.

Glue logic is a theory of ‘semantic assembly’, that is, the/wawhich information about
the meaning that is provided by lexical items and grammiatizastructions is put together
to get a meaning for the whole utterance. As such, it is soraeaginostic about the exact
nature of the meaning-elements that are being assembtbdygh the assembly techniques
employed presumably impose some restrictions on what ttenimg-elements can be). In
introductory presentations, there is a tradition of usingnkhdgue’s logical forms without
intensions, which | will follow here. First I will discuss bi& predicate-argument structure,
then quantifiers, at the same time developing the ‘contewt floesentation. Then | turn to
scoping modifiers and the elimination of restriction praes. | will close with some more
general remarks.

“1 am indebted to Ash Asudeh and Mary Dalrymple for discussibsome of the issues considered here,
all errors are of course due to me.

Proceedings of the 2003 Conference of the Australian LstguSociety 2

2 Predicates and Arguments

In the semantic format we’ll be using, the simplest kind ofamieg-constructor is one for a
proper name. All meaning-constructors consist of two comegods, on the left, the ‘meaning-
side’, a specification of a meaning, on the right the ‘glwesia specification of the infor-
mation needed to control assembly. This will consist of ecHjpation of (Montagovian)
semantic type (based erandt, in the introductory version), combined with f-structutat
cational’ information (where the input or output will be Eited from/delivered to). So if a
proper name such ast is inserted under an N with f-structuge the resulting constructor
will look like this, where the semantic type is subscriptedhe location (but is however
often omitted, although not in this paper):

Q) Art : g.

In the presentation we will be developing, this says thattrgentArt, of typee (entity), is
delivered to the f-structure (perhaps the subject of a sentence).

A bit more complex is the meaning-constructor of an intrawesiverb, which would collect
content of typee from its subject(’s f-structure), and deliver content gbey (truth-value)
to its own f-structure, which is also that of the clause. Thput-output connection is rep-
resented with theo symbol, popularly read as ‘lollipop’, representing imgliion in linear
logic. So if the f-structure of the whole sentenceg jgshe constructor fosleepwill be:

(2) sleep : g.—o f;

It's an important principle of glue logic that the semantipé of the meaning-side is fully
determined by the structure of the glue side. Here the seoigpie has to be a function
from typee to typet; this is usually represented partially by writing the me@nside as a

lambda-expression, such as.sleefz). To reduce clutter, | will usually not do this. One
could also subscript the meaning-sides with their tygleep_,.

The next thing we are going to do is connect the location-gxpessions, called ‘literals’,
of the meaning-constructors with links according to somes;uwe’ll call this *hookup’,
its result is called a ‘proof structure’. For these part@rutonstructors, all we have to do
is connectArt’s e (output) tosleeps e, (input), with the final output coming out ateeps

t. We can diagram the idea of content being delivered to aniéatetl from f-structure
locations with a highly explicit picture like this (positie of the meaning and glue sides of
the meaning-constructors swapped):

ce ge : Art

@) Isuss g|PRED ‘Art
f: €eo

PRED ‘Sleep(SUBJY ge—ofi : sleep

We seeArt’s constructor delivering its content to(output port represented by a solid dot),
andsleeps collecting fromg (input represented by circle) and deliveringfto These con-

structors can then be assembled by adding an arrow to cotireeotitput to the input a.
An important fact which (3) doesn't represent is that thexe lbe multiple input and output

Proceedings of the 2003 Conference of the Australian LstguSociety 3

ports of the same type at an f-structure; if there are meltigdys of hooking them up, this
may result in ambiguity, although it is also possible thatstoaints to be discussed later will
block some of the hookups.

To see a case where the syntactic structure makes a difeen@adook at a transitive sentence
such asArt likes Gwen We'll follow Montague Grammar and Marantz (1984) in treatia
transitive verb as something that takeseaffirom the direct object) as input, and yields an
intransitive predicate as output, i.e., something of type (¢ — ¢). So if we have this full
syntactic structure:

(4) S SUBJ ¢{PRED ‘Art]
/\ -
NP, VP, #:|PRED ‘Like(SUBJ, OBJ)]
| — = |PRED °
N, v, NP, OBJ i Gweni

\ \ \
Art likes N;,
\
Gwen

the f-structure of the object will bk, and the constructors we want will be:

(5) Art : g,
Gwen : h,
like : h.—o(ge—o ft)

Now the f-structure locational information will control wadl name’s output gets hooked
up to which of the verb’s inputs, so that the syntactic striteeis seen to contribute to the
semantic interpretation in the right way.

To move from these ideas to a system that actually does somgeile need to specify a
number of more things. First, how is the f-structure infotimrain the glue-sides produced?
The answer is from the lexicon, via the LFG processes of misttion and functional reso-
lution. In the lexicon, meaning-constructors contain esgions using function application
and theT-metavariable, which in a lexical item means ‘the f-struetocorrespondent of the
c-structure node over me’. So that the lexical form of thestarctors above will be:

6) Art : 1,
Gwen : T,
like : (7OBJ), —o ((1SUBJ) — 1,)

So when the lexical items are used in structure (4), thesestamtiated constructors instan-
tiate to:

(7) Art . g.
Gwen : h,
like : (fOBJ). —o ((fSUBJ) —o f;)

Proceedings of the 2003 Conference of the Australian LstguSociety 4

And the last step, functional resolution, replaces thetionel designator expressions with
the f-(sub)structures they designate to produce (5).

Next, we need a formal scheme to officially identify the irgoaihd the outputs, which we do
by defining a notion of ‘polarity’, as follows:

(8) Polarity Rule 1: An entire glue side has positive polarit
Polarity Rule 2: If an implication has positive polarityethits antecedent has negative
polarity and its consequent positive.

So by (8), the polarities for the constructors will be:

(9) Art : g

+
Gwen : h,
l
like : h. —o (go — f)
- + - + +

where the polarity of an implication will be written undes implication symbol. Finally,
inputs and outputs are characterized as folléws:

(10) Inputs and Outputs: a positive literal is an output, gatiee literal an input.

Given polarity, we can formulate the ‘Hookup Rule’:

(11) Hookup Rule: Every negative literal must be connectednte and only one positive
literal, and every positive to one and only one negativeepkfor one positive literal,

the final output, located at the f-structure of the sentence.

A structure connected in accordance with this rule, but mmessarily obeying a further
constraint to be introduced later, is called a ‘Proof Suicet

Leaving out the polarities to reduce clutter, Hookup in (&g us:
12) Art Je
Gwen : h,

likes : h. —o g. —o f;

1This is the polarity convention used in the LFG literaturefartunately de Groote (1999) and Perrier
(1999) use the opposite.

Proceedings of the 2003 Conference of the Australian LstguSociety 5

We've also begun leaving out rightmost parentheses (themésar implication is taken to be
right-associative).

Now we move on to the content-assignment rules. We begind&graag the meaning side
of each constructor as content to its (entire) glue-side:

(13) Content Flow Rule 1: The content of a glue side is its nrepside,

The result of applying this to (12) is (writing the contentof implication under its implica-
tion symbol):

(14) Art Je
Art
Gwen he

like he - g —o fi
like

Next we propagate content from positive literals (outputtgoto negatives that they are
linked to (input ports):

(15) Content Flow Rule 2: The content of a positive literapispagated to the negative
that it is linked to.

Two applications of this produce:

(16) Art Je
Art

Gwen : h,
Gwen

like : h, - g. —o f;
Gwen like Art

And finally a somewhat more interesting rule, for calculgtihe content of the consequent
of an implication from that of the implication and its antdeat:

(17) Content Flow Rule 3: If an implication hasas its own content, and as its an-
tecedent’s content, then the content of its consequeribjgthe functiona applied to
the argument).

This is where the strict correlation between the semanpe tyf the meaning-side and the
structure of the glue-side does its work: if for example §yetof the transitive verb con-
structor here didn’t take two typearguments, the application of (17) wouldn’t make sense.
But since it is of typee—e—t, everything is fine, and two applications of CFR 3 produce:

Proceedings of the 2003 Conference of the Australian LstguSociety 6

(18) Art Je
Art
Gwen : h,
leven
like : h, -0 ge —o fi

Gwen like Art likeGwen like(Gwen(Art)

So we've got logical forms being produced by the f-structure

From some points of view this may not look very illuminatimgsimply says that the mean-
ing is what you get by applying a function namkkk to the argument&Swenand Art in
succession. But this function might be something with sosedul content, such as perhaps
an explication along the lines of:

(19) \Y.AX| whenX is nearY, X feels something good
when X thinks about”, X feels something good

Then the resultant logical form will be equivalent to (19)wihe lambdas removed and (the
meanings of\Gwenand Art substituted for” and X respectively, and since the f-structure
can be connected to overt phrase structure in a wide varfetyags, as discussed in the
LFG literature, we will have managed to express the conoedttetween semantic roles and
overt positions across a typologically diverse range ofleges (Bresnan 2001, Falk 2001,
Dalrymple 2000).

Unfortunately, the Hookup Rule is not enough to guaranteallivery of sensible content,
as can be seen by considering the possibilities for thisttre:

(20) Art ge
Gwen : h,
like : he — g. —o fi
obviously : fi — fi
The problem is that alongside of the sensible hookup, wilezdeeds intoobviouslywhich

then provides the final output, there is a silly one where thed Hutput comes fronike, and
the output ofobviouslyis fed back to its input.

The following principle will eliminate the unwanted hookup

(21) Correctness Criterion: Every (sub-)formula must receontent according to the
content-flow ruleg.

2C.f. Theorem 1.8 (Perrier 1999).

Proceedings of the 2003 Conference of the Australian LstguSociety 7

You can see that ibbviouslyin (20) has its output connected to its input, neither will ge
content, since the content of the whole implication needsert at its antecedent in order to
produce content for its consequent.

This system can handle a significant range of constructlmrtsadditional rules are needed
to deal with quantifiers, which are involved in the scopingdifier constructions we will be
analysing later.

3 Quantifiers

We will treat quantifiers as designating relations betwests, such as overlap, non-overlap,
inclusion etc., so thatome knights sleeig true iff the set of knights overlaps with the set
of sleepers, etc. (this is ‘generalized quantifiers’ (Baevand Cooper 1981)). Since the
semantic type of a set-designatorist, that of a relation between sets will be:

(22) (e—t)—(e—t)—t

So what about the locational information? There is a conwartb the effect that the first
argument of a quantifier is taken to be the nominal conteriteoNP it appears in (its ‘restric-
tion’), the second the predication provided by its enviremin(its ‘(nuclear) scope’). The
nominal content is of semantic type-t, but where will its inputs and outputs be located?
There is a useful convention, borrowed from HPSG, thattim@ut is located at the value of
an attributevAR, thet output at the value of an attribuRESTR which will here be located
in the NP’s f-structuré.

So if the f-structure is (23), then the instantiated corcdtnufor knight, and the first part of
the everyconstructor, will be as in (24), with polarities indicatedthe extent that we have
principles to determine them:

@3) | QUANT Every
sus; .|PRED ‘Knight
f1 TIvar g]

RESTR gr:i]
PRED ‘Sleep(SUBJ)Y’

(24) knight : gv. —o gry
+

+

every : (gu. —o gry) —o ...
- 7 4+ 4

The reason we don’t know the polarities of the first two literia that they are antecedent
and consequent of a negative conditional, and the rules spéaify polarity only for those
of a positive. But it is obvious what the answer has to be: toneat things up we will

3They are standardly put in the ‘semantic projection’, whidh be argued against later in the paper.

Proceedings of the 2003 Conference of the Australian LstguSociety 8

have to match the first and second literals of the common natmthose of the quantifier,
respectively. Therefore the first quantifier literal willveato be positive and the second
negative, which can be provided for by this rule:

(25) Polarity Rule 3: If an implication has negative polgrits antecedent has positive
polarity and its consequent has negative.

So now we can do the hookup and set some initial content as\®il

(26) a. guv. —o gry

X knight j

b. (gve -0 gry) o
every

But to get any further, we need some content for the positiwecedent, which is provided
by another Content Flow Rule:

(27) Content Flow Rule 4: The content of a positive antecedes new symbol, not used
elsewhere in the network.

This symbol will function as a variable, to later be lambdistaacted over.
So by CFR 4 we get:

(28) a. gv. -0 gry

’\ knight j

b. (gve - gr) o
T every

and by the two propagation rules we have so far:

(29) a. gv. —o gry
x knight knightx)
b. (gve —o gg’t) —o ...
x knightx) every

So noweverys first argument has content at both its antecedent and ftsecpuent, so we
need a rule to produce content for the whole thing. This shbalsomething representing
a function, sinceeverywas supposed to be a relation between functions (from estit
truth-values).

Lambda-calculus is the standard method for manufacturngtfons, and the propagation
rule we need in effect imposes another well-formednessravit for hookups in its formu-
lation:

Proceedings of the 2003 Conference of the Australian LstguSociety 9

(30) Content Flow Rule 5: If is the content of a positive antecedent (of a negative impli-
cation), andy is the content of its (negative) consequent, themust appear free in,
and the content of the implication ig.¢.

If the condition in (30) isn't satisfied, then content assimgmt to the implication will falil,
and the hookup (Proof Structure) will fail to be a Proof-Needo the Correctness Criterion
(21). But here it is satisfied, so applying CFR 5, what we getlie content of the first
(complex) argument of the quantifier ds:.knighfx). But this is in fact equivalent to just
plain knight That seemed like a lot of work for not much result, but thelles@on be cases
where the lambda can’t be eliminated.

So, finally, using the rule CFR 3 for positive implications getevery knight) as the value
of the consequent of the main implication, resulting in {piartial) assigment of content to
subformulas:

(31) gv. —o gry
x knight knightz)
(gv. —o qre) —o

x knight knight{x) every everyknight)

The second argument of the quantifier is provided by the sadimgs of the quantified NP,
its ‘'scope’. The antecedent of the scope argument will delbontent (a type variable) to
the f-structure of the quantified NP, while the consequelitailect typet content back from
some containing f-structure, which by CFR 5 will have to @amtthe antecedent variable
free, if a well-formed Proof Structure is to result. In thimple clause, the only suitable
f-structure to locate the consequent input gf;ibelow we will say a bit more about how the
consequent location is determined. So the constructorbevis below, with the effects of
CFR 4 represented:

(32) sleep : ge —o Ji
sleep

knight : gv. —o gry
x knight knighty)

every : (gv. —o gr) - (ge — [i) — Ji
x knight knighty) every vy every knight)

Now hookup and content flow through the scope argument vatlipce the following, where
the first (restriction) argument of the quantifier is abbagstl as ellipsis dots:

(33) sleep : Je —o fi
Yy sleep sleefy)
T /
every : ... -0 (ge —o fi) —o fi
knight every y \y.sleefgy) sleepy) everyknight)
= sleep

Proceedings of the 2003 Conference of the Australian LstguSociety 10

And finally we apply CFR 3 again to produce the final resuéry knight)(sleep.

An important question is on what basis we chgses the location of the second argument’s
consequent. It turns out that for a first approximation thedrquantifier scope, one can do
quite well by letting this location be specified as a variableich can be identified with any
location in the f-structure, as long as the final result isveéeéd back to the same place, that
is, specified with the same variable. Using upper case stédicvariables over f-structure,
the lexical meaning-constructor for tiegerywill now look like this:

(34) every : ((1VAR), —o ({RESTR)) —o (1, —o H,) —o H,

We get (33) by identifyingd with f. It turns out that the restriction on hookups imposed
by CFR 5 (the content of the consequent must contain the mbafehe antecedent free)
excludes various wrong scope possibilities that tend todreeated by naive schemes of
‘Quantifier Raising’, a result discussed at length in Dalpjeret al. (1999).

Here is an example where variable choice of scope-conseamnenfinal result produces
an ambiguity, the wide and narrow scope readingswafryone seems to sledp keep the
structure simple the restriction argument of the quantigieot expressed:

(35) a. [suBJ {PRED ‘Everyonef
PRED ‘Seem(XCOMP)

f:
SUBJ hf |
XCOMP g:
PRED ‘Sleep(XCOMP’

b. (he—oH;)—oH; : everyone (he—H;) —o H, : everyone
he—og; : sleep he—og; : sleep
g0 fi : seem g@t : seem
seenfeveryoné\x.sleefiz))) everyoné\z.seenjsleefz)))

H=g H=f

Getting the right logical forms out afeermstructures with functional control is one of the
trickier aspects of semantic interpretation in LFG; glugidadoes it easily. Although an ex-
tended discussion of quantifier scope is beyond the scopesgbaper, the basic mechanism
is important, because it ultimately solves the ‘integmnagowoblem’ that provided Andrews
and Manning’s motivation for restriction projections.

We have now presented the framework, which is so far subdsgdnalmost the same as
standard glue logic, with two differences aside from oufedlént technique for deriving the
meanings. A minor notational difference is that in the staddormulations, there are uni-
versal quantifiers on the glue side binding any f-structiaeables. Here we've followed
Fry (1999:94) in omitting them, a move that is legitimate dugxe universal quantifiers can
be floated upward through implications, and then undersssoidhplicitly applying to free

Proceedings of the 2003 Conference of the Australian LstguSociety 11

variables. A more substantial difference is we have dispemsth the ‘semantic projection’

that the meaning-constructors normally associate meaminitl, instead associating them
directly with the f-structure. The semantic projection siloehave any clear empirical jus-
tification (no analyses are broken when it is removed), amacignsistent with the analysis
in the next section, which depends on the possibility of dimg semantic assembly with

multiple projections.

4 Scoping Modifiers

The problem that ‘scoping modifiers’ present for LFG is tlneg tather flat f-structures that
they get under the theory don’t seem to provide the rightgyuie for semantic interpretation,
which does however seem to be tightly linked to the c-stmgci an obvious way (so that
various other well-formalized linguistic theories have iasues with these constructions).
Complex predicates pose similar issues, as discussed yaA($997) and Andrews and
Manning (1993, 1999). The case of scoping modifiers is simpteit is what | will discuss
here.

For an example, the pair of NPs:

(36) a. aformer alleged file-swapper

b. an alleged former file-swapper

both get an f-structure like this, where the two adjectivessraembers of an intrinsically
unordered adjunct set:

(37) [QUANT EVERY
[PRED ‘Former}}

ADJUNCT
{[PRED ‘Alleged]

PRED ‘File-swapper’
This structure generates the expectation that both of the WP be ambiguous, with the
same meanings, instead of differing in meaning in the way thearly do, and which is
obviously suggested by the c-structure trees they wouldasidy get (Andrews 1983):

(38) NP
pet N
ev‘ery AP/\N
alléged AP/\N
for#ner I<I

\
file-swapper

Proceedings of the 2003 Conference of the Australian LstguSociety 12

The central component of Andrews and Manning'’s solutiohi®gort of problem was an ad-
ditional projection that reflected the tree-structure nabosely, which we called ‘a-structure’
because it seems suitable to perform at least some of thédonac¢hat are often attributed
to the somewhat variably defined notion of ‘argument stmatd will now show how glue
logic supports an analysis whereby a-structure is retaimgidusing Kaplan’s (1995) origi-
nal ‘locational’ notion of projection rather than AndrewsdaManning’s second innovation,
restriction projections.

The basic idea is to have a-structure provide different sle@d-elations than f-structure, so
that the scoping modifiers are a-structurally heads, widir tN-sisters being ‘a-structural
complements’, which we construed as values of an a-streictiiributeARG. The form of
a-structure proposed for (38) is (3®REDattributes included to make it easier to interpret
the structure, although | don't believe they actually esd-structure, or perhaps anywhere
else):

(39) |PRED ‘Former(ARG)’
a: PRED ‘Alleged(ARG)’
ARG b: :
ARG c:[PRED ‘F|Ie-swappeﬂ

We can get the f-structure (37) and the a-structure (39) ttmtree (38) by annotating the
tree as follows, where there are annotations specifyinly b@&nd a- structural information,
the arrows pre-subscripted withor « to indicate whether they are providing information
about f- or a- structure, respectively (unannotated nodeamed to share both f- and a-
structure):

(40) NP
/\
Det N
\ -
every AP N
sl € (47T ADJUNCT) ol =gl
aT :al (aTARG): al
/_
alleged AP N
oL € (41 ADIJUNCT) oT=0l
aT:al (aTARG): al
\ \
former N
|
file-swapper

Because they are differently related to the c-structune thaf-structure is, these a-structures
will ‘respect the tree’ (Alsina 1997) as required, but hovll wie combine their information
with that from the f-structure, where grammatical relasi@ontrol the relationship between
NPs and semantic roles? Andrews and Manning showed howvictestrprojections could
be used to solve this problem, and that the alternativesititdrature were not satisfactory;

Proceedings of the 2003 Conference of the Australian LstguSociety 13

here | will show that glue-logic can also do it, essentiafyuirtue of its capacity to shift
content from one location in a structure to another.

The basic idea will be to locate thiecontent of NPs at a-structure, but theontent, which
is shared through the levels, at f-structure. Thereforeitiiestantiated meaning-constructor
for file-swappemill be:

(41) file-swapper : (51 VAR), —o T,

The RESTRattribute can now be abolishédind the constructor of the quantifier adjusted
accordingly (I so far see no reason why the quantifier’s cangtr would have to say what
projection the scopg&information is located on, so thié variable doesn’t specify this):

(42) every : ((¢TVAR)6 —0 41,) —© (¢Te —o H;) — H,

For simple NPs such asvery fileswapperthe analysis will work just as before, except that
the noun’s consequent output and quantifier’s restricsicohsequent input passes through
an a-structure rather than an f-struct®eSTRattribute. But when an operator adjective is
present, things will be different. Consider a simple casé wne scoping modifier, with
c-structure, f-structure and a-structure as indicatedvielith the c-structure nodes sub-
scripted first with their f-structure and second with thegstaucture correspondent:

(43) a. NP,
/\
Det, ,, Ny,
\ —
every AP}, , Ny
\ \
Ah,a Ng,b

\ \
alleged fileswapper

b. [QUANT EVERY
ADJUNCT {hz[PRED ‘Allegedﬂ}

PRED ‘File-swapper’
VAR gvl |

c. [PRED ‘Alleged(ARG)
ARG b:[PRED ‘File-Swapper(ARG}

Now the noun’s meaning-constructor will collect as inpw #ariable provided as output by
the quantifier, because this is located at f-structure, lwisithe same for both the quantifier

4As can theVAR attribute, although the explanation of why one can get awidly this is somewhat com-
plex.

Proceedings of the 2003 Conference of the Australian LstguSociety 14

and the noun, and return its output to its a-structure, widgéh But the quantifier collects
input back (for its restriction argument) from its own austurea, which is different from

b. So without some sort of middleman, the flow of content willldecked. The scoping
adjective is of course the middleman: we can construe it bsatimg ¢-type input from the
ARG-valueb of its own a-structure correspondentand outputting the processed result back
at a; this effect will be produced by an uninstantiated meargagstructor like this:

(44) alleged : (,1ARG), — ,T,

Hooking up the literals produced by lexical insertion anstamtiation, we get:

(45) every : (gue —o a) - ...
wfery
alleged : by —o ay
\al!eged
file-swapper : gv, —o by
fileswapper

The noun’s output is hooked up to the scoping modifier's inpat the latter's output to
the quantifier’s first argument’s input (a negative consaguand the content then flows as
indicated here, with the resulting value for the quantigie€striction argument underlined:

(46) (gve —o (lt) —0 -
\z.allegedfileswappefr)) allegedfileswappefr)) every

T

\ bt \
gu
T

—0 Q

fileswappefr) alleged allegedileswappefx))

R

e — bt

fileswapper fileswappér)

So we see that the modifier gets applied to the noun-meanitg iappropriate manner.

Furthermore, it should be clear that if there is more thansmop@ing modifier, as in (40), the
analysis will respect the tree as required, because eaclfienoull pass up the processed
content of itsN-sister’s a-structure to its own a-structure, and the modl@pplication of the
modifiers will be determined by the c-structural relationsghe tree. Finally, the treatment
of the second (scope) argument of the quantifier will soleanitegration problem for which
restriction projections were proposed, since the contetiteoquantifier's scope can be de-

termined (at least mostly) by f-structure as discussedeagtid of the previous section, and
this is not affected by the change introduced here.

Proceedings of the 2003 Conference of the Australian LstguSociety 15

5 Final Remarks

| have shown how glue-logic can presented with a content-flomceptualization, and thus
presented, can be seen to assist with solving some degengtblems by virtue of its abil-

ity to integrate information located on different levels poojections, of linguistic structure,

a result which might have wider applicability in other thesremploying parallel architec-
tures.

I will finish by mentioning two further issues. First, Andre\2003) extends the analysis
to deal with some more complex types of scoping modifiersh asself-proclaimedand
confessedand also regular intersective modifiers, suclyeedyandunscrupulous Some
remarks are also made about developing the same kind ofsasédy complex predicates.
A downloadable implementation, ‘Baby Glue’ covers someheke issues as wWéll.

Second, I've here presented content-flow only for linearlicagpion, whereas some glue
logic analyses also use linear conjunctian (ead ‘tensor’); as discussed in Andrews (2003),
content flow can be extendeddyg although it remains to be seen whetlgeis truly required
for natural language semantic assembly.

Bibliography

Alsina, A. 1997. A theory of complex predicates: Evidenearcausatives in Bantu and
Romance. In A. Alsina, J. Bresnan, and P. Sells (Eds.), 2032

Alsina, A., J. Bresnan, and P. Sells (Eds.). 19@bmplex PredicatesStanford, CA: CSLI
Publications.

Andrews, A. D. 1983. A note on the constituent structure oflifiers. Linguistic Inquiry
14:695-7.

Andrews, A. D. 2003. Glue logic, projections, and modifiddfRL:
http://arts. anu. edu. au/l i ngui sti cs/ Peopl e/
Aver yAndr ews/ Papers.

Andrews, A. D., and C. D. Manning. 1993. Information-spiegdand levels of represen-
tation in LFG. Technical Report CSLI-93-176, CSLI, Stawnfdsniversity, Stanford, CA.
URL:

ht t p: / / ww nl p. st anf ord. edu/ manni ng/ papers/ .

Andrews, A. D., and C. D. Manning. 199€.omplex Predicates and Information Spreading
in LFG. Stanford, CA: CSLI Publications.

Barwise, J., and R. Cooper. 1981. Generalized quantifietmatural language.inguistics
and Philosophy159-219.

Bresnan, J. W. 2001 exical-Functional SyntaxOxford: Blackwell.

SAvailable from
http://arts. anu. edu. au/ |l i ngui sti cs/ peopl e/ aver yandr ews/ sof t war e/

Proceedings of the 2003 Conference of the Australian LstguSociety 16

Crouch, R., and J. van Genabith. 2000. Linear logic for liatpu
URL: http: //ww2. parc. conli stl/menbers/crouch/.

Dalrymple, M. (Ed.). 1999.Syntax and Semantics in Lexical Functional Grammar: The
Resource-Logic ApproactMIT Press.

Dalrymple, M. 2000.Lexical Functional GrammarAcademic Press.

Dalrymple, M., R. M. Kaplan, J. T. Maxwell, and A. Zaenen (Bd%995.Formal Issues in
Lexical-Functional GrammarStanford, CA: CSLI Publications.

Dalrymple, M., J. Lamping, F. Pereira, and V. Saraswat. 1@Q@antification, anaphora and
intensionality. In Dalrymple (Ed.), 39-90.

de Groote, P. 1999. An algebraic correctness criteriomfioitionistic multiplicative proof-
nets. TCS115-134.
URL:http://ww. |l oria.fr/ degroote/bibliography. htnl.

Falk, Y. N. 2001. Lexical-Functional Grammar: An Introduction to Parallelo@straint-
Based SyntaxStanford University: CSLI Publications.

Fry, J. 1999. Proof nets and negative polarity licensingviibalrymple (Ed.), 91-116.

Kaplan, R. M. 1995. The formal architecture of LFG. In M. Bahple, R. M. Kaplan, J. T.
Maxwell, and A. Zaenen (Eds.), 7-27. CSLI Publications.

Marantz, A. 1984 0On the Nature of Grammatical RelatianSambridge MA: MIT Press.

Perrier, G. 1999. Labelled proof-nets for the syntax andas#its of natural languages.
L.G. of the IGPL629-655.
URL:http://ww. loria.fr/ perrier/papers.htm.

