
Proceedings of the 2003 Conference of the Australian Linguistic Society 1

Glue logic vs. Spreading Architecture in LFG*

AVERY D . ANDREWS

The Australian National University
Avery.Andrews@anu.edu.au

1 Introduction

Although the f-structures of LFG look like an intuitively clear representation of many aspects
of meaning, it has proved somewhat more difficult than one might have expected to connect
them to conventional logical forms, over which entailment and other semantic properties and
relations can be defined by standard methods. In this paper I will present what I believe to
be a relatively easy to use formulation of the ‘glue logic’ approach (Dalrymple 1999, 2000),
and then show how to eliminate the ‘restriction projections’ used by Andrews and Manning
(1993, 1999) in their analyses of scoping modifiers and complex predicates, allowing the
analyses to work with the conventional ‘locational projections’ of Kaplan (1995).

The presentation is based on recent work by de Groote (1999),and Perrier (1999), which
allows glue-logic deductions, which linguists sometimes find quite difficult to understand, to
be replaced by a proof-net-based technique which I believe to be easier to follow, because it
employs totally obviously monotonic processes of link addition and assignment of values to
(sub-)formulas, instead of deductive combinations and transformations of premises, which
are easy to lose one’s way in. I suspect that the uptake of glue-logic by working linguists is
significantly impeded by the difficulties of understanding it, so anything that offers a chance
of making it easier is worth trying. This proof-net technique involves no substantive change
in the theory, only the methods for calculating its results.

The proposed elimination of restriction projections will however require a substantive change,
the elimination of the ‘semantic projection’. Rather than associate semantic information
with a single semantic projection, it will be associated both with the f-structure and an ‘a-
structure’ along the lines of Andrews and Manning (1999), and the capacity of glue-logic
to integrate information present at different locations will be seen to make Andrews and
Manning’s use of restriction projections unnecessary.

Glue logic is a theory of ‘semantic assembly’, that is, the way in which information about
the meaning that is provided by lexical items and grammatical constructions is put together
to get a meaning for the whole utterance. As such, it is somewhat agnostic about the exact
nature of the meaning-elements that are being assembled (although the assembly techniques
employed presumably impose some restrictions on what the meaning-elements can be). In
introductory presentations, there is a tradition of using Montague’s logical forms without
intensions, which I will follow here. First I will discuss basic predicate-argument structure,
then quantifiers, at the same time developing the ‘content flow’ presentation. Then I turn to
scoping modifiers and the elimination of restriction projections. I will close with some more
general remarks.

* I am indebted to Ash Asudeh and Mary Dalrymple for discussionof some of the issues considered here,
all errors are of course due to me.

Proceedings of the 2003 Conference of the Australian Linguistic Society 2

2 Predicates and Arguments

In the semantic format we’ll be using, the simplest kind of meaning-constructor is one for a
proper name. All meaning-constructors consist of two components, on the left, the ‘meaning-
side’, a specification of a meaning, on the right the ‘glue-side’, a specification of the infor-
mation needed to control assembly. This will consist of a specification of (Montagovian)
semantic type (based one andt, in the introductory version), combined with f-structural‘lo-
cational’ information (where the input or output will be collected from/delivered to). So if a
proper name such asArt is inserted under an N with f-structureg, the resulting constructor
will look like this, where the semantic type is subscripted to the location (but is however
often omitted, although not in this paper):

(1) Art : ge

In the presentation we will be developing, this says that thecontentArt, of typee (entity), is
delivered to the f-structureg (perhaps the subject of a sentence).

A bit more complex is the meaning-constructor of an intransitive verb, which would collect
content of typee from its subject(’s f-structure), and deliver content of type t (truth-value)
to its own f-structure, which is also that of the clause. Thisinput-output connection is rep-
resented with the−◦ symbol, popularly read as ‘lollipop’, representing implication in linear
logic. So if the f-structure of the whole sentence isf , the constructor forsleepwill be:

(2) sleep : ge −◦ ft

It’s an important principle of glue logic that the semantic type of the meaning-side is fully
determined by the structure of the glue side. Here the semantic type has to be a function
from typee to typet; this is usually represented partially by writing the meaning side as a
lambda-expression, such asλx.sleep(x). To reduce clutter, I will usually not do this. One
could also subscript the meaning-sides with their type:sleepe→t.

The next thing we are going to do is connect the location-typeexpressions, called ‘literals’,
of the meaning-constructors with links according to some rules; we’ll call this ‘hookup’,
its result is called a ‘proof structure’. For these particular constructors, all we have to do
is connectArt’s e (output) tosleep’s e, (input), with the final output coming out atsleep’s
t. We can diagram the idea of content being delivered to and collected from f-structure
locations with a highly explicit picture like this (positions of the meaning and glue sides of
the meaning-constructors swapped):

(3)
f :

SUBJ g:
[

PRED ‘Art’
] e •

e ◦

PRED ‘Sleep(SUBJ)’

t •

ge : Art

ge−◦ft : sleep

We seeArt’s constructor delivering its content tog (output port represented by a solid dot),
andsleep’s collecting fromg (input represented by circle) and delivering tof . These con-
structors can then be assembled by adding an arrow to connectthe output to the input atg.
An important fact which (3) doesn’t represent is that there can be multiple input and output

Proceedings of the 2003 Conference of the Australian Linguistic Society 3

ports of the same type at an f-structure; if there are multiple ways of hooking them up, this
may result in ambiguity, although it is also possible that constraints to be discussed later will
block some of the hookups.

To see a case where the syntactic structure makes a difference, we look at a transitive sentence
such asArt likes Gwen. We’ll follow Montague Grammar and Marantz (1984) in treating a
transitive verb as something that takes ane (from the direct object) as input, and yields an
intransitive predicate as output, i.e., something of typee −◦ (e −◦ t). So if we have this full
syntactic structure:

(4) Sf

NPg

Ng

Art

VPf

Vf

likes

NPh

Nh

Gwen

f :

SUBJ g:
[

PRED ‘Art’
]

PRED ‘Like(SUBJ, OBJ)’

OBJ h:
[

PRED ‘Gwen’
]

the f-structure of the object will beh, and the constructors we want will be:

(5) Art : ge

Gwen : he

like : he −◦ (ge −◦ ft)

Now the f-structure locational information will control which name’s output gets hooked
up to which of the verb’s inputs, so that the syntactic structure is seen to contribute to the
semantic interpretation in the right way.

To move from these ideas to a system that actually does something we need to specify a
number of more things. First, how is the f-structure information in the glue-sides produced?
The answer is from the lexicon, via the LFG processes of instantiation and functional reso-
lution. In the lexicon, meaning-constructors contain expressions using function application
and the↑-metavariable, which in a lexical item means ‘the f-structure correspondent of the
c-structure node over me’. So that the lexical form of the constructors above will be:

(6) Art : ↑e

Gwen : ↑e

like : (↑OBJ)e −◦ ((↑SUBJ)e −◦ ↑t)

So when the lexical items are used in structure (4), these uninstantiated constructors instan-
tiate to:

(7) Art : ge

Gwen : he

like : (f OBJ)e −◦ ((f SUBJ)e −◦ ft)

Proceedings of the 2003 Conference of the Australian Linguistic Society 4

And the last step, functional resolution, replaces the functional designator expressions with
the f-(sub)structures they designate to produce (5).

Next, we need a formal scheme to officially identify the inputs and the outputs, which we do
by defining a notion of ‘polarity’, as follows:

(8) Polarity Rule 1: An entire glue side has positive polarity.
Polarity Rule 2: If an implication has positive polarity, then its antecedent has negative
polarity and its consequent positive.

So by (8), the polarities for the constructors will be:

(9) Art : ge

+

Gwen : he

+

like : he −◦ (ge −◦ ft)
− + − + +

where the polarity of an implication will be written under its implication symbol. Finally,
inputs and outputs are characterized as follows:1

(10) Inputs and Outputs: a positive literal is an output, a negative literal an input.

Given polarity, we can formulate the ‘Hookup Rule’:

(11) Hookup Rule: Every negative literal must be connected to one and only one positive
literal, and every positive to one and only one negative, except for one positive literal,
the final output, located at the f-structure of the sentence.

A structure connected in accordance with this rule, but not necessarily obeying a further
constraint to be introduced later, is called a ‘Proof Structure’.

Leaving out the polarities to reduce clutter, Hookup in (9) gives us:

(12) Art : ge

Gwen : he

likes : he −◦ ge −◦ ft

1This is the polarity convention used in the LFG literature; unfortunately de Groote (1999) and Perrier
(1999) use the opposite.

Proceedings of the 2003 Conference of the Australian Linguistic Society 5

We’ve also begun leaving out rightmost parentheses (that is, linear implication is taken to be
right-associative).

Now we move on to the content-assignment rules. We begin by assigning the meaning side
of each constructor as content to its (entire) glue-side:

(13) Content Flow Rule 1: The content of a glue side is its meaning side,

The result of applying this to (12) is (writing the content ofan implication under its implica-
tion symbol):

(14) Art : ge

Art
Gwen : he

Gwen

like : he −◦ ge −◦ ft

like

Next we propagate content from positive literals (output ports) to negatives that they are
linked to (input ports):

(15) Content Flow Rule 2: The content of a positive literal ispropagated to the negative
that it is linked to.

Two applications of this produce:

(16) Art : ge

Art

Gwen : he

Gwen

like : he −◦ ge −◦ ft

Gwen like Art

And finally a somewhat more interesting rule, for calculating the content of the consequent
of an implication from that of the implication and its antecedent:

(17) Content Flow Rule 3: If an implication hasa as its own content, andb as its an-
tecedent’s content, then the content of its consequent isa(b) (the functiona applied to
the argumentb).

This is where the strict correlation between the semantic type of the meaning-side and the
structure of the glue-side does its work: if for example the type of the transitive verb con-
structor here didn’t take two typee arguments, the application of (17) wouldn’t make sense.
But since it is of typee→e→t, everything is fine, and two applications of CFR 3 produce:

Proceedings of the 2003 Conference of the Australian Linguistic Society 6

(18) Art : ge

Art

Gwen : he

Gwen

like : he −◦ ge −◦ ft

Gwen like Art like(Gwen) like(Gwen)(Art)

So we’ve got logical forms being produced by the f-structure.

From some points of view this may not look very illuminating;it simply says that the mean-
ing is what you get by applying a function namedlike to the argumentsGwenandArt in
succession. But this function might be something with some useful content, such as perhaps
an explication along the lines of:

(19) λY.λX. whenX is nearY , X feels something good
whenX thinks aboutY , X feels something good

Then the resultant logical form will be equivalent to (19) with the lambdas removed and (the
meanings of)GwenandArt substituted forY andX respectively, and since the f-structure
can be connected to overt phrase structure in a wide variety of ways, as discussed in the
LFG literature, we will have managed to express the connection between semantic roles and
overt positions across a typologically diverse range of languages (Bresnan 2001, Falk 2001,
Dalrymple 2000).

Unfortunately, the Hookup Rule is not enough to guarantee the delivery of sensible content,
as can be seen by considering the possibilities for this structure:

(20) Art : ge

Gwen : he

like : he −◦ ge −◦ ft

obviously : ft −◦ ft

The problem is that alongside of the sensible hookup, wherelike feeds intoobviouslywhich
then provides the final output, there is a silly one where the final output comes fromlike, and
the output ofobviouslyis fed back to its input.

The following principle will eliminate the unwanted hookup:

(21) Correctness Criterion: Every (sub-)formula must receive content according to the
content-flow rules.2

2C.f. Theorem 1.8 (Perrier 1999).

Proceedings of the 2003 Conference of the Australian Linguistic Society 7

You can see that ifobviously in (20) has its output connected to its input, neither will get
content, since the content of the whole implication needs content at its antecedent in order to
produce content for its consequent.

This system can handle a significant range of constructions,but additional rules are needed
to deal with quantifiers, which are involved in the scoping modifier constructions we will be
analysing later.

3 Quantifiers

We will treat quantifiers as designating relations between sets, such as overlap, non-overlap,
inclusion etc., so thatsome knights sleepis true iff the set of knights overlaps with the set
of sleepers, etc. (this is ‘generalized quantifiers’ (Barwise and Cooper 1981)). Since the
semantic type of a set-designator ise→t, that of a relation between sets will be:

(22) (e→t)→(e→t)→t

So what about the locational information? There is a convention to the effect that the first
argument of a quantifier is taken to be the nominal content of the NP it appears in (its ‘restric-
tion’), the second the predication provided by its environment (its ‘(nuclear) scope’). The
nominal content is of semantic typee→t, but where will its inputs and outputs be located?
There is a useful convention, borrowed from HPSG, that thee input is located at the value of
an attributeVAR, thet output at the value of an attributeRESTR, which will here be located
in the NP’s f-structure.3

So if the f-structure is (23), then the instantiated constructor for knight, and the first part of
theeveryconstructor, will be as in (24), with polarities indicated to the extent that we have
principles to determine them:

(23)

f :

SUBJ g:

QUANT Every
PRED ‘Knight’
VAR gv:[]
RESTR gr:[]

PRED ‘Sleep(SUBJ)’

(24) knight : gve −◦ grt

− + +

every : (gve −◦ grt) −◦ . . .

? − ? + +

The reason we don’t know the polarities of the first two literals is that they are antecedent
and consequent of a negative conditional, and the rules so far specify polarity only for those
of a positive. But it is obvious what the answer has to be: to connect things up we will

3They are standardly put in the ‘semantic projection’, whichwill be argued against later in the paper.

Proceedings of the 2003 Conference of the Australian Linguistic Society 8

have to match the first and second literals of the common noun with those of the quantifier,
respectively. Therefore the first quantifier literal will have to be positive and the second
negative, which can be provided for by this rule:

(25) Polarity Rule 3: If an implication has negative polarity, its antecedent has positive
polarity and its consequent has negative.

So now we can do the hookup and set some initial content as follows:

(26) a. gve −◦ grt

knight

b. (gve −◦ grt) −◦ . . .

every

But to get any further, we need some content for the positive antecedent, which is provided
by another Content Flow Rule:

(27) Content Flow Rule 4: The content of a positive antecedent is a new symbol, not used
elsewhere in the network.

This symbol will function as a variable, to later be lambda-abstracted over.

So by CFR 4 we get:

(28) a. gve −◦ grt

knight

b. (gve −◦ grt) −◦ . . .

x every

and by the two propagation rules we have so far:

(29) a. gve −◦ grt

x knight knight(x)

b. (gve −◦ grt) −◦ . . .

x knight(x) every

So nowevery’s first argument has content at both its antecedent and its consequent, so we
need a rule to produce content for the whole thing. This should be something representing
a function, sinceeverywas supposed to be a relation between functions (from entities to
truth-values).

Lambda-calculus is the standard method for manufacturing functions, and the propagation
rule we need in effect imposes another well-formedness criterion for hookups in its formu-
lation:

Proceedings of the 2003 Conference of the Australian Linguistic Society 9

(30) Content Flow Rule 5: Ifξ is the content of a positive antecedent (of a negative impli-
cation), andφ is the content of its (negative) consequent, thenξ must appear free inφ,
and the content of the implication isλξ.φ.

If the condition in (30) isn’t satisfied, then content assignment to the implication will fail,
and the hookup (Proof Structure) will fail to be a Proof-Net due to the Correctness Criterion
(21). But here it is satisfied, so applying CFR 5, what we get for the content of the first
(complex) argument of the quantifier isλx.knight(x). But this is in fact equivalent to just
plainknight. That seemed like a lot of work for not much result, but there will soon be cases
where the lambda can’t be eliminated.

So, finally, using the rule CFR 3 for positive implications, we getevery(knight) as the value
of the consequent of the main implication, resulting in this(partial) assigment of content to
subformulas:

(31) gve −◦ grt

x knight knight(x)

(gve −◦ grt) −◦ . . .

x knight knight(x) every every(knight)

The second argument of the quantifier is provided by the surroundings of the quantified NP,
its ‘scope’. The antecedent of the scope argument will deliver content (a typee variable) to
the f-structure of the quantified NP, while the consequent will collect typet content back from
some containing f-structure, which by CFR 5 will have to contain the antecedent variable
free, if a well-formed Proof Structure is to result. In this simple clause, the only suitable
f-structure to locate the consequent input at isf ; below we will say a bit more about how the
consequent location is determined. So the constructors will be as below, with the effects of
CFR 4 represented:

(32) sleep : ge −◦ ft

sleep

knight : gve −◦ grt

x knight knight(y)

every : (gve −◦ grt) −◦ (ge −◦ ft) −◦ ft

x knight knight(y) every y every(knight)

Now hookup and content flow through the scope argument will produce the following, where
the first (restriction) argument of the quantifier is abbreviated as ellipsis dots:

(33) sleep : ge −◦ ft

y sleep sleep(y)

every : . . . −◦ (ge −◦ ft) −◦ ft

knight every y λy.sleep(y) sleep(y) every(knight)
= sleep

Proceedings of the 2003 Conference of the Australian Linguistic Society 10

And finally we apply CFR 3 again to produce the final resultevery(knight)(sleep).

An important question is on what basis we chosef as the location of the second argument’s
consequent. It turns out that for a first approximation theory of quantifier scope, one can do
quite well by letting this location be specified as a variable, which can be identified with any
location in the f-structure, as long as the final result is delivered back to the same place, that
is, specified with the same variable. Using upper case italics for variables over f-structure,
the lexical meaning-constructor for theeverywill now look like this:

(34) every : ((↑VAR)e −◦ (↑RESTR)t) −◦ (↑e −◦ Ht) −◦ Ht

We get (33) by identifyingH with f . It turns out that the restriction on hookups imposed
by CFR 5 (the content of the consequent must contain the content of the antecedent free)
excludes various wrong scope possibilities that tend to be generated by naive schemes of
‘Quantifier Raising’, a result discussed at length in Dalrymple et al. (1999).

Here is an example where variable choice of scope-consequent and final result produces
an ambiguity, the wide and narrow scope readings ofeveryone seems to sleep; to keep the
structure simple the restriction argument of the quantifieris not expressed:

(35) a.

f :

SUBJ h:
[

PRED ‘Everyone’
]

PRED ‘Seem(XCOMP)’

XCOMP g:

SUBJ h:
[]

PRED ‘Sleep(XCOMP’)

b. (he−◦Ht)−◦Ht : everyone

he−◦gt : sleep

gt−◦ft : seem

seem(everyone(λx.sleep(x)))
H = g

(he−◦H t) −◦ Ht : everyone

he−◦gt : sleep

gt−◦ft : seem

everyone(λx.seem(sleep(x)))
H = f

Getting the right logical forms out ofseem-structures with functional control is one of the
trickier aspects of semantic interpretation in LFG; glue logic does it easily. Although an ex-
tended discussion of quantifier scope is beyond the scope of this paper, the basic mechanism
is important, because it ultimately solves the ‘integration problem’ that provided Andrews
and Manning’s motivation for restriction projections.

We have now presented the framework, which is so far substantively almost the same as
standard glue logic, with two differences aside from our different technique for deriving the
meanings. A minor notational difference is that in the standard formulations, there are uni-
versal quantifiers on the glue side binding any f-structure variables. Here we’ve followed
Fry (1999:94) in omitting them, a move that is legitimate because universal quantifiers can
be floated upward through implications, and then understoodas implicitly applying to free

Proceedings of the 2003 Conference of the Australian Linguistic Society 11

variables. A more substantial difference is we have dispensed with the ‘semantic projection’
that the meaning-constructors normally associate meanings with, instead associating them
directly with the f-structure. The semantic projection doesn’t have any clear empirical jus-
tification (no analyses are broken when it is removed), and isinconsistent with the analysis
in the next section, which depends on the possibility of controlling semantic assembly with
multiple projections.

4 Scoping Modifiers

The problem that ‘scoping modifiers’ present for LFG is that the rather flat f-structures that
they get under the theory don’t seem to provide the right guidance for semantic interpretation,
which does however seem to be tightly linked to the c-structure in an obvious way (so that
various other well-formalized linguistic theories have noissues with these constructions).
Complex predicates pose similar issues, as discussed by Alsina (1997) and Andrews and
Manning (1993, 1999). The case of scoping modifiers is simpler, so it is what I will discuss
here.

For an example, the pair of NPs:

(36) a. a former alleged file-swapper

b. an alleged former file-swapper

both get an f-structure like this, where the two adjectives are members of an intrinsically
unordered adjunct set:

(37)

QUANT EVERY

ADJUNCT

[

PRED ‘Former’
]

[

PRED ‘Alleged’
]

PRED ‘File-swapper’

This structure generates the expectation that both of the NPs will be ambiguous, with the
same meanings, instead of differing in meaning in the way they clearly do, and which is
obviously suggested by the c-structure trees they would plausibly get (Andrews 1983):

(38) NP

Det

every

N

AP

alleged

N

AP

former

N

N

file-swapper

Proceedings of the 2003 Conference of the Australian Linguistic Society 12

The central component of Andrews and Manning’s solution to this sort of problem was an ad-
ditional projection that reflected the tree-structure moreclosely, which we called ‘a-structure’
because it seems suitable to perform at least some of the functions that are often attributed
to the somewhat variably defined notion of ‘argument structure’. I will now show how glue
logic supports an analysis whereby a-structure is retained, but using Kaplan’s (1995) origi-
nal ‘locational’ notion of projection rather than Andrews and Manning’s second innovation,
restriction projections.

The basic idea is to have a-structure provide different headship relations than f-structure, so
that the scoping modifiers are a-structurally heads, with their N-sisters being ‘a-structural
complements’, which we construed as values of an a-structure attributeARG. The form of
a-structure proposed for (38) is (39) (PRED-attributes included to make it easier to interpret
the structure, although I don’t believe they actually existin a-structure, or perhaps anywhere
else):

(39)

a:

PRED ‘Former(ARG)’

ARG b:

PRED ‘Alleged(ARG)’

ARG c:
[

PRED ‘File-swapper’
]

We can get the f-structure (37) and the a-structure (39) fromthe tree (38) by annotating the
tree as follows, where there are annotations specifying both f- and a- structural information,
the arrows pre-subscripted withφ or α to indicate whether they are providing information
about f- or a- structure, respectively (unannotated nodes assumed to share both f- and a-
structure):

(40) NP

Det

every

N

AP
φ↓∈ (φ↑ADJUNCT)

α↑= α↓

alleged

N
φ↑= φ↓

(α↑ARG)= α↓

AP
φ↓∈ (φ↑ADJUNCT)

α↑= α↓

former

N
φ↑= φ↓

(α↑ARG)= α↓

N

file-swapper

Because they are differently related to the c-structure than the f-structure is, these a-structures
will ‘respect the tree’ (Alsina 1997) as required, but how will we combine their information
with that from the f-structure, where grammatical relations control the relationship between
NPs and semantic roles? Andrews and Manning showed how restriction projections could
be used to solve this problem, and that the alternatives in the literature were not satisfactory;

Proceedings of the 2003 Conference of the Australian Linguistic Society 13

here I will show that glue-logic can also do it, essentially by virtue of its capacity to shift
content from one location in a structure to another.

The basic idea will be to locate thet-content of NPs at a-structure, but thee-content, which
is shared through the levels, at f-structure. Therefore theuninstantiated meaning-constructor
for file-swapperwill be:

(41) file-swapper : (φ↑VAR)
e
−◦ α↑t

The RESTRattribute can now be abolished,4 and the constructor of the quantifier adjusted
accordingly (I so far see no reason why the quantifier’s constructor would have to say what
projection the scopet-information is located on, so theH variable doesn’t specify this):

(42) every : ((φ↑VAR)
e
−◦ α↑t) −◦ (φ↑e

−◦ Ht) −◦ Ht

For simple NPs such asevery fileswapper, the analysis will work just as before, except that
the noun’s consequent output and quantifier’s restriction’s consequent input passes through
an a-structure rather than an f-structureRESTRattribute. But when an operator adjective is
present, things will be different. Consider a simple case with one scoping modifier, with
c-structure, f-structure and a-structure as indicated below, with the c-structure nodes sub-
scripted first with their f-structure and second with their a-structure correspondent:

(43) a. NPg, a

Detg, a

every

Ng, a

APh, a

Ah, a

alleged

Ng, b

Ng, b

fileswapper

b.

g:

QUANT EVERY

ADJUNCT
{

h:
[

PRED ‘Alleged’
]

}

PRED ‘File-swapper’

VAR gv:
[]

c.
a:

PRED ‘Alleged(ARG)’

ARG b:
[

PRED ‘File-Swapper(ARG)’
]

Now the noun’s meaning-constructor will collect as input the variable provided as output by
the quantifier, because this is located at f-structure, which is the same for both the quantifier

4As can theVAR attribute, although the explanation of why one can get away with this is somewhat com-
plex.

Proceedings of the 2003 Conference of the Australian Linguistic Society 14

and the noun, and return its output to its a-structure, whichis b. But the quantifier collects
input back (for its restriction argument) from its own a-structurea, which is different from
b. So without some sort of middleman, the flow of content will beblocked. The scoping
adjective is of course the middleman: we can construe it as collecting t-type input from the
ARG-valueb of its own a-structure correspondenta, and outputting the processed result back
ata; this effect will be produced by an uninstantiated meaning-constructor like this:

(44) alleged : (α↑ARG)t −◦ α↑t

Hooking up the literals produced by lexical insertion and instantiation, we get:

(45) every : (gve −◦ at) −◦ . . .

every

alleged : bt −◦ at

alleged

file-swapper : gve −◦ bt

fileswapper

The noun’s output is hooked up to the scoping modifier’s input, and the latter’s output to
the quantifier’s first argument’s input (a negative consequent), and the content then flows as
indicated here, with the resulting value for the quantifier’s restriction argument underlined:

(46) (gve −◦ at) −◦ . . .

x λx.alleged(fileswapper(x)) alleged(fileswapper(x)) every

bt −◦ at

fileswapper(x) alleged alleged(fileswapper(x))

gve −◦ bt

x fileswapper fileswapper(x)

So we see that the modifier gets applied to the noun-meaning inthe appropriate manner.

Furthermore, it should be clear that if there is more than onescoping modifier, as in (40), the
analysis will respect the tree as required, because each modifier will pass up the processed
content of itsN-sister’s a-structure to its own a-structure, and the order of application of the
modifiers will be determined by the c-structural relations in the tree. Finally, the treatment
of the second (scope) argument of the quantifier will solve the integration problem for which
restriction projections were proposed, since the content of the quantifier’s scope can be de-
termined (at least mostly) by f-structure as discussed at the end of the previous section, and
this is not affected by the change introduced here.

Proceedings of the 2003 Conference of the Australian Linguistic Society 15

5 Final Remarks

I have shown how glue-logic can presented with a content-flowconceptualization, and thus
presented, can be seen to assist with solving some descriptive problems by virtue of its abil-
ity to integrate information located on different levels, or projections, of linguistic structure,
a result which might have wider applicability in other theories employing parallel architec-
tures.

I will finish by mentioning two further issues. First, Andrews (2003) extends the analysis
to deal with some more complex types of scoping modifiers, such asself-proclaimedand
confessed, and also regular intersective modifiers, such asgreedyandunscrupulous. Some
remarks are also made about developing the same kind of analysis for complex predicates.
A downloadable implementation, ‘Baby Glue’ covers some of these issues as well.5

Second, I’ve here presented content-flow only for linear implication, whereas some glue
logic analyses also use linear conjunction (⊗, read ‘tensor’); as discussed in Andrews (2003),
content flow can be extended to⊗, although it remains to be seen whether⊗ is truly required
for natural language semantic assembly.

Bibliography

Alsina, A. 1997. A theory of complex predicates: Evidence from causatives in Bantu and
Romance. In A. Alsina, J. Bresnan, and P. Sells (Eds.), 203–246.

Alsina, A., J. Bresnan, and P. Sells (Eds.). 1997.Complex Predicates. Stanford, CA: CSLI
Publications.

Andrews, A. D. 1983. A note on the constituent structure of modifiers. Linguistic Inquiry
14:695–7.

Andrews, A. D. 2003. Glue logic, projections, and modifiers.URL:
http://arts.anu.edu.au/linguistics/People/
AveryAndrews/Papers.

Andrews, A. D., and C. D. Manning. 1993. Information-spreading and levels of represen-
tation in LFG. Technical Report CSLI-93-176, CSLI, Stanford University, Stanford, CA.
URL:
http://www-nlp.stanford.edu/ manning/papers/.

Andrews, A. D., and C. D. Manning. 1999.Complex Predicates and Information Spreading
in LFG. Stanford, CA: CSLI Publications.

Barwise, J., and R. Cooper. 1981. Generalized quantifiers and natural language.Linguistics
and Philosophy159–219.

Bresnan, J. W. 2001.Lexical-Functional Syntax. Oxford: Blackwell.

5Available from
http://arts.anu.edu.au/linguistics/people/averyandrews/software/

Proceedings of the 2003 Conference of the Australian Linguistic Society 16

Crouch, R., and J. van Genabith. 2000. Linear logic for linguists.
URL: http://www2.parc.com/istl/members/crouch/.

Dalrymple, M. (Ed.). 1999.Syntax and Semantics in Lexical Functional Grammar: The
Resource-Logic Approach. MIT Press.

Dalrymple, M. 2000.Lexical Functional Grammar. Academic Press.

Dalrymple, M., R. M. Kaplan, J. T. Maxwell, and A. Zaenen (Eds.). 1995.Formal Issues in
Lexical-Functional Grammar. Stanford, CA: CSLI Publications.

Dalrymple, M., J. Lamping, F. Pereira, and V. Saraswat. 1999. Quantification, anaphora and
intensionality. In Dalrymple (Ed.), 39–90.

de Groote, P. 1999. An algebraic correctness criterion for intuitionistic multiplicative proof-
nets.TCS115–134.
URL: http://www.loria.fr/ degroote/bibliography.html.

Falk, Y. N. 2001. Lexical-Functional Grammar: An Introduction to Parallel Constraint-
Based Syntax. Stanford University: CSLI Publications.

Fry, J. 1999. Proof nets and negative polarity licensing. InM. Dalrymple (Ed.), 91–116.

Kaplan, R. M. 1995. The formal architecture of LFG. In M. Dalrymple, R. M. Kaplan, J. T.
Maxwell, and A. Zaenen (Eds.), 7–27. CSLI Publications.

Marantz, A. 1984.On the Nature of Grammatical Relations. Cambridge MA: MIT Press.

Perrier, G. 1999. Labelled proof-nets for the syntax and semantics of natural languages.
L.G. of the IGPL629–655.
URL: http://www.loria.fr/ perrier/papers.html.

