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Abstract
The Natural Semantic Metalanguage (NSM) program of Anna Wierzbicka and her col-
leagues has a lot to say about the meanings of individual words, but virtually no work has
been done on the problem of how to assemble these meanings to produce meanings for ut-
terances, which is the problem of semantic composition thatis the major focus of formal
semantics. In this paper I begin to fill this gap by making somedefinite proposals for doing
semantic composition in NSM using the ‘glue logic’ that has been proposed as a method of
semantic assembly for the syntactic theory of LFG.

Although many different generative syntactic theories could provide a basis for semantic
composition in NSM, LFG is a reasonable choice, because it combines to a relatively high
degree the properties of being formally explicit, easy to learn, and applicable to a typolog-
ically diverse range of languages, and the architecture of LFG+Glue provides a clean sepa-
ration between issues of semantic composition on the one hand, and syntactic realization on
the other.

I will examine some issues that arise in composing explications for some of the valence op-
tions of the verbswarn andgo, showing that naive substitution is insufficient, but that the
typed lambda calculus can deal with the problems adduced. Wewill also see that the problem
of composing explications should not be deferred indefinitely, since attempting to compose
explications can expose deficiencies which aren’t evident when the explications are viewed
in isolation. I will conclude with a brief discussion of someof the problems afforded by
phenomena of quantifier scope.
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1 Introduction

The Natural Semantic Metalanguage (NSM) program of Wierzbicka and her colleagues1 has
been extensively developed as a theory of lexical semantics, but has no account at all of
semantic composition, the way in which word and construction meanings are combined to
give meanings for novel utterances. This is a serious deficiency, because without such an
account, NSM has nothing to say about how people can understand an in-principle infinite
range of utterances that they haven’t encountered previously. And it is a deficiency which it
would be good to address sooner rather than later, since attempting to compose explications
can reveal problems: explications which seem reasonably good in isolation often produce
bad results when combined. So one can’t just do lexical semantics indefinitely and assume
that the results will continue to hold up when attention is turned to semantic composition.

In this paper I will show how to make a start on doing semantic composition for NSM
by using Lexical-Functional Grammar (LFG) and ‘Glue Logic’.2 Although this is certainly
not the only possible approach—many contemporary syntactic theories could do the job—it
is a convenient combination, because LFG normalizes a greatdeal of cross-linguistic gram-
matical variation in terms of case-marking, agreement, word-order and other features of overt
structure into a far more uniform system of ‘f-structures’,which is furthermore close to tra-
ditional conceptions of grammatical relations and inflectional features such as tense, number
and case. Then Glue Logic (so named because it is based on a kind of logic, and is used
to ‘glue’ individual contributions to meaning into an integrated result) provides a technique
whereby the f-structures (with further input from overt constituent structure, if necessary)
can constrain semantic composition. The net result is that LFG+Glue allows one to think
about problems of semantic composition in one language without having to get enmeshed in
the details of overt syntax, but with reasonable confidence that the results will carry over to
many other languages.

2 Variables and Substitution

Although NSM lacks an explicit account of semantic composition, there have been from
the beginning some implicit hints as to what might be involved, in the form of upper case
‘variables’ in explications that appear to be intended as targets for substitution. An example
from Goddard (1998:205) that we will be discussing from various points of view is this
explication of the three-argument valence frame of the verbgo:

1See for example Goddard (1998), Wierzbicka and Goddard (2002), and the NSM homepage athttp:
//www.une.edu.au/arts/LCL/disciplines/linguistics/nsmpage4.htm.

2For a thorough introduction to LFG, see Falk (2001); for recent discussions of Glue Logic at introductory
and more advanced levels, see Andrews (2004, to appear), Asudeh (2004), Lev (2005), and Dalrymple (1999,
2001).
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(1) X went from A to B (yesterday) =
before this X was in place-A
X wanted to be somewhere else
because of this, X moved for some time (yesterday)
because of this, after this, X wasn’t in place-A anymore
X was in place-B

There are several features of this explication that requirecomment. One is the parenthesized
‘yesterday’, which I will take as an allusion to the fact thatsomething must be done about
tense and time reference, a problem that I will entirely ignore. A substantive semantic point
is that it attributes volitionality to the subject. This might be challenged on the basis that
sentences such asJohn’s suitcase went from New York to Karachi are fine, but observe that
John went from New York to Karachi implies that John at least intended to go somewhere, al-
though not necessarily to Karachi (he might have wanted to goto, say, Reykjavı́k, but got on
the wrong plane). And this sentence would not cover a situation where the CIA just shipped
John off to Karachi with no active involvement on his part. Therefore, the explications for
go with human versus inanimate subjects would appear to be different (higher animals such
as dogs can be treated either way, it seems to me). And finally,there are the instances of
‘place-’ prefixed to the variables A and B, which need to disappear under substitutions, and
which I will take as indications of the need for some sort of type system, something which
we will be discussing later.

This use of variables in NSM is found as far back as Wierzbicka(1972), and so may
be considered as an original feature of the framework. And itis reasonable to suppose that
if we want to compose the meanings of the words in a sentence such as:

(2) I/You went from Albury to Mildura

what we are supposed to do is substitute things based on the explications of the NPs in the
sentence for the variables, in some manner prescribed by theovert syntax. In (1), for the
variable X of the explication ofgo, the obvious thing to substitute is the semantic primitive
representing the subject itself (I or you), while for the source and goal proper names, I would
suggest that we simply substitute the names themselves. This might be regarded as an eva-
sion of rather than a solution to the problem of proper names in NSM (Goddard, pc), but it
has the virtue of being simple (and consider that all languages seem to have proper names,
and use them in pretty much the same way).

So one could envision a ‘naive subsitution-based’ approachto semantic composition
in NSM, whereby some device uses explications as standardlypresented together with the
grammatical structure to assemble word-explications (andmaybe construction-explications)
into utterance explications. This is in fact not too far off what we will be actually suggest,
except that there turns out to be some pre-exisiting mathematics (typed lambda-calculus) that
is relevant for organizing the substitutions. There are however at least three problems that
might be adduced against the general approach, the first one trivial, which will be dealt with
here, and the other two requiring some more serious development, in following sections.

The trivial problem is that NSM is not supposed to be making use of abstract symbols,
which is what the variables appear to be. The answer is that these symbols can be thought of
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as ‘assembly symbols’, which are used only to orchestrate semantic assembly, and disappear
from the final results, where only NSM primitives (‘content symbols’) are allowed. This
clarification of the policy is worth establishing now, sincewhen we get to typed lambda-
calculus, the apparatus of assembly symbols becomes substantially more imposing, and we
will have a use for a mathematical result to the effect that wecan always tell when it will
disappear as required.

3 Accidence

A more substantial problem is that when we substitute different primitives for X in (1), it
is sometimes necessary to make certain flow-on adjustments to the form of the explication,
as required by phenomena of case-marking and agreement, traditionally called ‘accidence’.
For example if the subject is ‘I’, we want the last line of (1) to be ‘I was in Mildura’, but if it
is ‘you’, ‘you were in Mildura’. The problem will be more extensive for NSM explications
in languages where the role of case-marking and agreement isgreater.

There are in principle at least two possible solutions to this problem. The first would
be to construct a system of ‘morphological fixup functions’,which would take as inputs
combinations of primitives and perhaps other symbols such asbe+Past+I, and would produce
as outputs actual words such aswas and were. The facilities for the mid-90s activity of
MOO-programming could be adapted for this purpose,3 but I think a better approach would
be one that addressed some other issues at the same time, suchas formalizing NSM syntax,
especially the valence properties of the primitives.

Although the use of grammatical constructions in NSM was originally rather free-
wheeling, working out a definite syntax has become a priority, explored in many of the
papers in Wierzbicka and Goddard (2002), although not on thebasis of formal syntactic pro-
posals. A rather salient problem is how to state the valence (combinatorial properties) of the
primitives in a uniform way, while the overt syntax of the different NL instantiations of the
NSM metalanguage show a wide range of variation in how syntactic relations are expressed
in terms of surface word-order, case-marking, agreement, etc. A reasonable way to approach
this problem would be use some selection from the current techniques of generative grammar
(construed widely to include all mathematically-based approaches to linguistic structure, not
just the GB/Minimalist tradition) to formalize NSM, by setting up first a universal system of
what we’ll call ‘NSM terms’, and then language-particular ‘rendering schemes’ to convert
NSM terms into ordinary expressions (typically, monologicdiscourses) in the various spe-
cific NL instantiations of NSM. So the NSM term forthis is good might be ‘GOOD(THIS)’,
with the rendering component for English NSM responsible for providing the copula, and
setting up the agreement and morphologically present tensein the English version of the
explication.

The NSM terms will then lack phenomena of accidence, so that we can do substitu-

3MOOs were user-programmable text-based virtual environments, in which for example you might enter a
room and be told that you saw a lizard, and type something like‘pick up the lizard’. Then you would see on
your screen ‘you try to pick up the lizard, but it hisses and scurries away’, while other people in the room would
see ‘Maal Dweb tries to pick up the lizard, but it hisses and scurries away’. A description of these facilities can
be found athttp://www.nwe.ufl.edu/writing/help/moo/jhc/builder help.shtml).
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tions into them without worrying about this problem, and deal with it later in the rendering
component. The resulting setup would have a significant resemblance to formal semantics,
with overt NL expressions connected to abstract formulas, but there is a very important dif-
ference in the flow of explanation for meanings: in formal semantics, the abstract structures
are supposed to explain the meanings by virtue of some sort ofmathematical definition4 of
entailment and other meaning-based relations between utterances, while in this view of for-
malized NSM, the abstract structures are part of an account of the syntax of NSM, and the
meanings reside in the overt utterances.

Working out this kind of syntax for NSM is not a trivial project, and could be ap-
proached in various ways, but one thing which we are likely towant and will in any event
need for this paper is something called a ‘type system’, which can be thought of as a set of
categories into which expressions of a formalized languagecan fall. For example a phrase-
structure grammar has a simple, finite type system with no interesting structure, consisting
of its node-labels (phrase-types and parts of speech).

However most work on type systems focusses on infinitary oneswith interesting struc-
ture, and some kind of ontological significance for the typesis typically assumed. For ex-
ample there might be a typee for ‘entities’, and a typet for ‘propositions’.5 An infinite
system of types is then produced by means of ‘type constructors’ which create new types
from combinations of old ones, of which the most essential isthe ‘exponential’ type con-
structor, which combines a typea and a typeb to produce the exponential typea→b. This is
understood to be a type of expressions which combines with expressions of typea to produce
expressions of typeb. For example if ‘GOOD’ is of typee→t and ‘THIS’ is of type ‘e’, then
‘GOOD(THIS)’ will be of typet.

This example illustrates that to go along with an exponential type constructor, we need
a syntactic construction which we will call ‘application’,whereby a ‘predicate’ of an expo-
nential type is applied to an ‘argument’ of the input type of the exponential, to produce an
expression of the output type of the exponential.6 There are various notations in circulation
for application; the one most commonly encountered in linguistics is to put the predicate
first, followed by the argument in parentheses.

What about predicates with two or more arguments? Since Montague, the standard
way of dealing with these in formal semantics has been to treat them as predicates which
apply to an argument to produce another predicate; for example a two place predicate such as
SEE would be of typee→(e→t), so that ‘I see this’ would have the NSM term representation
‘SEE(THIS)(I)’, if we assume the widely followed convention, motivated by Marantz (1984),
of applying the ‘least active’ argument first. Notice now, inthe NSM term, that the predicate

4Usually model-theoretic, but interest in deductivex accounts seems to be increasing, as discussed recently
by Szabolcsi 2005.

5There is an issue as to whethere andt shouldn’t rather be ‘sorts’ (following Partee and Borschev(2004),
elements of the naive ontology of language), rather than types; we’ll see below that we definitely want there to
be types, and it is reasonable although not perhaps strictlynecessary to includee andt among these.

6People with some background in formal semantics might expect to hear about functions here, but for the
purposes of formalizing NSM, we only want the syntactic aspects of type-theory, not the model-theoretic ones,
at least in the first instance (it would be interesting to try to do model-theory on NSM, but not esssential).
Therefore I use the more grammatically-oriented term ‘predicate’.
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‘SEE’ applies to the argument immediately after it to produce the predicate ‘SEE(THIS)’ of
typee→t, which then applies to the next argument, so that there is implicit leftward grouping
of application expressions. This technique, called ‘currying’ (after the mathematician H.B.
Curry, who used it extensively, although it appears to have been invented earlier), is a bit
hard for beginners to get used to, but allows us to do a great deal using only the exponential
type constructor.

Before moving on to the next problem, I’ll point out that there are some fairly difficult
issues involved with setting up a type system for NSM. For example, do we want to take
a rather syntactic view, and put ‘someone’ and ‘something’ in the same type, or a more
ontological/conceptual one, and have distinct person/thing types? In the latter case, what do
we do about ‘semi human’ favored animals, such as dogs and cats, for which both ‘someone’
and ‘something’ don’t seem to be very appropriate (some animal/*someone/*something has
gotten into the garbage). I won’t advocate any particular position here, but would tend
to assume that ‘someone’ and ‘something’ are of the same type, but different sorts. This
question also arises for the ‘place-’ qualifiers in the explication (1).

Since we lack a worked out formalization of NSM, we will continue to write out ex-
plications informally in English NSM, although a proper formal term system or equivalent
is ultimately wanted.

4 The Failure of Naive Substitution

Now we come to our third problem, which is that naive substitution is not enough. This can
be seen by considering an explication such as this one for theverb ‘warn’ (Wierzbicka 2005),
and how we need it to behave under composition:

(3) X said something like this toY :

If you do not do this:

Z

something bad can happen

Suppose we want to combine this with other explications to get a meaning for a sentence
such as:

(4) You warned me to go

For reasons that we will consider later, I suggest using the following explication for mono-
valentgo instead of Goddard’s (1998:204) original one:

(5) X does something becauseX doesn’t want to be in some place anymore
because of this, after this,X is in another place

If we just do our substitutions naively in the obvious way, wewould presumably end up with
something like this:
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(6) you said something like this to me:

If you do not do this:

X does something becauseX doesn’t want to be in some place anymore

because of this, after this,X is in another place

something bad can happen

But this is clearly wrong, since (a) we have some uneliminated assembly symbols in the
final result (b) this result concomitantly doesn’t intuitively mean anything, let along the right
thing.

The effect we would like to achieve is to have ‘you’ substitute forX in the ‘go’ expli-
cation, yielding this as final result:

(7) you say something like this to me:

If you do not do this:

you do something because you don’t want to be in some place anymore
because of this, after this, you are in another place

something bad can happen

But naive substitution cannot achieve this, at least without losing some of its naivete.

But fortunately, there is an established mathematical technique that can achieve the
effect we want, which is flexible enough to have some plausibility as a general solution,
and has appropriate mathematical properties to be combinedwith (a formalized version of)
NSM. This is the typed lambda calculus, to which we turn in thenext section.

5 Typed Lambda Calculus

One way of thinking about the problem posed by the bad assembly (6) is that to eliminate it,
we need to get ‘you’ to substitute forX in the explication of the complement verb. Observe
that syntactic control won’t help here, since the syntacticcontroller isme, associated with the
primitive ‘I’ rather than the desired ‘YOU’. But if we could trigger some further substitutions
inside of the explication of ‘warn’, things might work out. In particular, keeping in mind the
above discussion of the application construction for exponential types, it might occur to us
to write down something along the lines of:

(8) X said something like this toY :

If you do not do this:

Z(you)

something bad can happen

which expresses the hope thatZ can be construed as a predicate of typee→t, which will
somehow apply to ‘you’ so as to produce our desired result.
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Typed lambda calculus (TLC) provides some rather deeply understood facilities for
doing this kind of thing. For our current purposes, a hopefully straightforward way of under-
standing it is as a technique for extending any kind of formalized language that has a type
system, especially if that language already has an application construction. The ingredients
are as follows:

(9) a. In the type system, an exponential type-constructor and corresponding application
construction, both of which may already be present.

b. For each type, an infinite number of variables of that type.These can be formally
represented with some symbol superscripted with the type and subscripted by a pos-
itive integer (ξe

1, ξe→t

146 , etc.), although people tend to informally use various letters
without subscripts, and omit the type superscripts when they’re clear from context
(xe, P e→t, etc). The variables might already be present in the language, although
probably not in the case of formalized NSM.

c. The ‘lambda (λ-) abstraction’ construction: given a termE of typeb and a variable
X of type a, the lambda-abstract ofE by X is (λX.E), of typea→b (meaning
roughly, something which, if fed something of typea, produces something of type
b). Syntactically, this is a technique for making new predicates out of pre-existing
materials. Parentheses not needed for disambiguation are usually omitted.

We want to characterize this as an ‘extension’ of a formal language, because the significance
of the lambda-abstraction is given by the rule of ‘β-reduction’, along with some additional
principles, which will eliminate the lambda-abstractionsfrom certain formulas, reducing
them to expressions in the original, unextended, language.This is clearly essential for any
NSM application, since we certainly don’t want the lambda-apparatus in particular to appear
in final explications for utterances.

We now take a brief informal look at howβ-reduction works—a careful and thorough
account of the technicalities can be found in Hindley and Seldin (1986), and many introduc-
tions to formal semantics (although these tend to dwell on the model-theoretic interpretation
of TLC, which we don’t need for our present purposes). A concise on-line presentation is
also provided by Pollard (2004).7

Since the type of(λX.E) will be a→b if X is of typea andE is of typeb, we will be
able to put this in front of an expressionA of typea, so as to get the following result of type
b:

(10) (λX.E)(A)

But what is (10) supposed to mean? Theβ-reduction rule says, for a first approximation,
that what it means is what you get by takingE, and replacing in it every ‘free’ occurrence
of X with A. A free occurrence of a variableX in an expressionE is one that does not

7Unfortunately, Hindley and Seldin (1986) is currently out of print, and any begins with the untyped lambda
calculus, so that a beginner would not find it easy to deal onlywith TLC. A relaxed but rigorous free-standing
introduction to the syntactic aspects of the TLC would be quite useful.

Selected Papers from the 2005 Conference of the Australian Linguistic Society. Edited by Keith Allan. 2006.



Proceedings of the 2005 Conference of the Australian Linguistic Society 9

occur inside any lambda abstraction withinE whose variable isX itself (these can be seen
as ‘protected’ by their bindingλ). In particular, if our application expression is:

(11) (λXe. X does something becauseX doesn’t want to be
in some place anymore

because of this, after this,X is in another place

)(you)

(think of the box as an indication that the contents are an informal NL rendition of an NSM
term, and note the omission of type superscripts on bound occurrences of variables), we then
want the following to be the result ofβ-reduction applying to (11):

(12) you do something because you don’t want to be
in some place anymore

because of this, after this, you are in another place

It is hopefully clear how this will work, and that it will fit with the tentative explication (8).

But we should also say something about why we described this as only a ‘first approxi-
mation’ toβ-reduction. A problem arises ifA contains any free variable that becomes bound
upon substitution intoE (X itself doesn’t count, since original occurrences free inE disap-
pear). If this were allowed to happen, the order in which we did β-reductions in complex
expressions would matter, which is something we don’t want to happen. To prevent it, ifA
contains any such free variables, we replace the variables in E that would capture them with
others that won’t. See Hindley and Seldin (1986:7-10) for a careful discussion of how this is
done (α-conversion), and pg. 72-73 for the final rule of the system,η-reduction.

To move on to a complete assembly for our example, we need to observe that lambda-
abstracts can be nested within each other. So for example if we have expressionE of type
t, and variablesX, Y of type e, then we have expression(λX.(λY.E)) of type e→(e→t),
which, following (Hindley and Seldin 1986:3), we can conventiently abbreviate as(λXY.E).
Now if we write (λXY.E)(B)(A), this will be β-reduced in two stages, by first replacing
the freeX ’s in E with B, and then the freeY ’s with A (making any substitutions needed to
avoid wrongful capture of variables).

So now we can revise the explication ofwarn to:

(13) λZe→tY eXe. X said something like this toY :
If you do not do this:

Z(you)
something bad can happen

If we abbreviate (13) asWarn, and (11) asGo, the final result is that

(14) Warn(Go)(you)(I)

reduces to the desired result (7).
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TLC can thus manage at least the kinds of substitutions that seem to be required to
do semantic assembly forwarn, and so seems like a reasonable technique to start with,
especially because of the depth of understanding which has been achieved for it. Most im-
portantly, it is possible to mechanically tell whetherβ-reduction and the other rules of TLC
can convert a given expression to a ‘normal form’ in which there are no lambda-abstracts.
This is essential for NSM, due to the requirement that these be absent from the final form of
an assembled explication.8 It is perhaps worth pointing out that in the syntactically simpler
but mathematically much deeper ‘untyped lambda calculus’,there isn’t any mechanical way
to tell whether the lambda-abstracts can be removed from a given expression, making this
not so suitable for use in conjunction with NSM.

6 Explications Under Composition

In addition to simply being able to manage semantic composition (and therebyinter alia,
making some progress towards allowing a meaningful comparison of NSM with formal se-
mantics), I said earlier that trying to compose explications can reveal inadequacies, which
would better be revealed sooner than later.

An example of this is provided by Goddard’s (1998:204) explication for monovalent
go, somewhat adapted by the removal of the time adverbial, and the addition of a lambda-
abstraction:

(15) λX. Before this,X was somewhere
X wanted to be somewhere else
because of this,X moved for some time
because of this, after this,X wasn’t in this place anymore
X was somewhere else

Using this, what we will get foryou warned me to go will be an assembled explication like
this:

(16) you say something like this to me:

If you do not do this:

before this you are somewhere

you want to be somewhere else
because of this, you move for some time
because of this, after this, you aren’t in this place anymore

you are somewhere else

The problem of course is with the ‘before this you are somewhere’ component. This is wrong
and makes no sense, because it is not part of what the addreseeof warn is being told to do,
but behaves like a presupposition of the warning.

8It is generally thought that lambda abstractions are neededin the expression of certain kinds of sentence
meanings (Pollard 2001:2), but if current NSM isn’t too far off the mark, this must be incorrect.
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This problem is avoided by the explication given in (11), where in effect the presup-
position is built into the ‘anymore’ qualification in the explication. Another feature of this
explication, not strictly relevant to the topic here, but worth mentioning briefly, is the replace-
ment of the ‘X moved for some time’ component with ‘X did something’. The justification
for this is a scenario such as the following.

Bob and Alice, characters in a science fiction story, get bored with their present loca-
tion and decide to go to the Tau Ceti Mega Mall. They hop onto a teleportation platform,
then Alice uses her implants to set the destination as TCM2, and activate the machine. At
this point they instantly ‘go to the Tau Ceti Mega Mall’, without anybody ‘moving for some
time’, or indeed, moving at all. But Alice’s use of her implants to activate and direct a ma-
chine does seem to count as ‘doing something’, so that she cango somewhere by doing this
(and Bob can count as going by proposing the destination, or assenting to Alice’s proposal).

The semantic behavior of presuppositions under syntactic embedding is notoriously
complex, and it remains to be seen if NSM can deal with all cases as easily as it seems
to handle monovalent ‘go’ with the aid of the ‘ANYMORE’ primitive. For exampleagain
seems to afford some tough challenges, which make for a good comparison with formal
semantics due to the extensive treatment ofagain in Kamp et al. (to appear) within the
framework of current Discourse Representation Theory.

7 Controlling Composition

The final thing we will do is to give a fairly brief indication of how LFG+Glue can organize
the assembly of the lambda-terms so as to produce the resultsthat we have been wanting
to get. I’ll for the most part assume basic LFG, although giving review hints at various
points. There are in fact a number different-looking but mathematically equivalent ways in
which this can be done. One attempt at an explanation for beginners in terms of things called
‘proof-nets’ is provided by Andrews (2004); here I’ll try a different approach based on the
use of ‘Natural Deduction’ as used by Asudeh and Crouch (2002) and Asudeh (2004), but
with a slight change in notation that might make it a bit more accessible to syntacticians.

To set the stage, consider what’s involved in assembling a meaning for the sentence
John likes Mary. Assume we start with semantic contributions for the three words, with
types as follows:

(17) Johne, Marye, Likee→e→t

As far as the types alone are concerned, there are two possible assemblies:

(18) a. Like(John)(Mary)

b. Like(Mary)(John)

of which the grammar of English allows only (b) (assuming theleast-active argument first
convention).

One of several possible ideas for implementing such restrictions is to let the syntactic
structure enrich the type information in some manner that would deliver the required con-
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straints. In LFG, the sentence will have as one of its syntactic representation an ‘f-structure’
that looks pretty much like this:

(19)

f :

















SUBJ g:
[

PRED ‘John’
]

TENSE PRES
PRED ‘Likes(SUBJ, OBJ)’

OBJ h:
[

PRED ‘Mary’
]

















For people whose LFG is rusty, an f-structure is a representation of the kind of informa-
tion about a sentence provided by traditional grammar, but with less in the way of parochial
assumptions, and more in the way of a worked-out mathematical framework. The com-
ponents of the f-structure, which are the things surroundedby square brackets, represent
grammatically significant units in the structure of the sentence, which may be represented by
discontinuous sequences of words, or no words at all (in the case of ‘omitted arguments’),
and the upper-case grammatical function labels such asSUBJandOBJ to their left indicate
the grammatical relations that the components bear to each other and the whole. These com-
ponents are themselves f-structures, so the whole f-structure is therefore a composite made
of smaller f-structures, composed as specified by the labels. Grammatical feature labels such
asTENSEalso appear to the left of grammatical feature values such asPRES, which repre-
sent grammatical properties of the grammatical units. In this diagram, each f-(sub)structure
has an italic ‘tag’ in front of it, to facilitate external reference to the structure and its com-
ponents (these lack theoretical significance in themselves, but can be used to help specify
theoretically interesting things, such as, for us, now, theway in which the syntactic structure
constrains the semantic assembly.

Intuitively, one can think of the wordsJohn andMary as ‘delivering content’ of typee
to the subject and object f-structure positions, which are theg andh substructures, respec-
tively, and the wordlikes as collecting content from these positions and delivering content
of type t to the f-structure of the whole sentence.9 Now suppose that, instead of being re-
stricted to being merely the types of our meaning-language (a formalized NSM), the types
relevant for assembly also included an f-structure tag (intuitively interpretable as a location).
We could do this by taking the types to be pairs composed on an f-structure tag and a se-
mantic type. The superscript notation for types becomes rather unreadable if we do this, so
we’ll change the notation to put the type to the right of a colon, so that the types of (17) are
replaced by:

(20) John : <g, e>

Mary : <h, e>

Like : <h, e>→<g, e>→<f, t>

These types clearly constrain the semantic assembly in the desired way, for this simple ex-

9The intuitions about content delivery and collection can bemade precise in the proof-net-based formulation
of Glue, as discussed for beginners in Andrews (2004).
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ample.10

And, happily, although our account of the kind of assembly wewant has so far been
intuitive, there is a pre-existing system (albeit much younger than TLC), that does what we
want. This is the ‘linear logic’ of Girard (1987), which is a variant of standard logic in which
premises by default disappear when used, and so can only be used once. This tends to strike
people as a rather bizarre feature to put into a logic, so to motivate it a bit, consider that
a person interested in the structure of valid arguments might be want to count how often a
premise is actually used in order to derive a given conclusion. For example we might have
two arguments to the effect that the world is doomed, one of them making no use at all of
the premise that George Bush is a imbecile, and another usingthis premise three times (the
end of the world following from three bad decisions whose inevitability each follows from
the GBi premise). Once you start counting premises, you’ve basically started doing linear
logic. And whatever its motivations and antecedents in logic are, it immediately delivers an
essential feature of the semantic interpretation of NLs, that word (and perhaps construction)
meanings are normally used once, and once only, something which is easy to guarantee
when the syntactic structure is a tree, but not when it might contain multiattachments and
even cycles (since a given semantic contribution will be encountered more than once on a
scan of the structure).11

The technique whereby linear logic deductions are used to control semantic assembly
is a standard tool of categorial grammar, the notion of a ‘labelled deduction’, in which the
formulas of some logical system are paired with objects of some other kind, and deduction
rules whereby formulas produce formulas are paired with operation rule whereby the objects
paired with the premises produce an object paired with the conclusion. We can in fact inter-
pret the formulas of (20) in this way: to the left of the colon,on the ‘meaning side’, appears
an expression in our meaning language, and to the right, on the ‘glue side’, a formula in lin-
ear logic, where the ‘→’ arrow is conventionally replaced by the symbol ‘−◦’, often glossed
‘lollipop’, which is standardly used to represent implication in linear logic. If we add the
semantic types to the meaning sides, (20) becomes:

(21) Johne : <g, e>

Marye : <h, e>

Likee→e→t : <h, e> −◦ <g, e> −◦ <f, t>

The evident redundancy here will be discussed soon.

In the Natural Deduction formulation of linear logic, the rules dealing with the−◦
connective are−◦-elimination and−◦-introduction (basically the same things as traditional
Modus Ponens and Hypothetical Deduction, respectively). The assemblies needed for our
analysis ofwarn can all be done with−◦-elimination alone, which is traditionally formulated
in various ways, of which the ‘tree format’ is most suited forour present purposes:

10This can be seen as a slight extension of Klein and Sag’s (1985) notion of ‘bounded closure’, which can
be seen as a sort of antecedent to the basic ideas of Glue Semantics (Asudeh 2004:88-89).

11Linear logic is one of a number of ‘substructural logics’, towhich a comprehensive introduction can be
found in Restall (2000). An incomplete but extremely usefulintroduction to linear logic for linguists is Crouch
and van Genabith (2000).
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(22)
A −◦ B A

−◦-elim
B

Here the premises appear above the line, the conclusion below, and the name of the rule used
to justify the conclusion to the right of the line. Derivations of arbitrary size can be made
by combining these structures together in trees (ordinary,rightside-up ones rather than the
upside-down ones favored by linguists); the linear logic restriction that every premise be used
once and once only amounts to the requirement that the tree have no ‘upwardly combining’
branches (re-entrancies), and that it be connected.

For semantic assembly, we need the labelled version of−◦-elim, where the label of an
implication is a lambda-abstraction of ‘corresponding type’ (to be defined more rigorously
below), and what−◦-elim does to the labels is apply the label of the implicationto the label
of the other premise:

(23)
f : A −◦ B a : A

−◦-elim
f(a) : B

This will only make sense if there is a systematic relationship between the structures of the
formulas on the right and the types of the labels on the left, and what we want for glue is in
essence the requirement that we can derive the semantic typefrom the formula by forgetting
the f-structural information, and replacing the−◦ connective with→.

More explicitly, the type that a meaning expression must have in order to be paired
with a glue expression can be derived by the following conversion functionC:

(24) a. If a formula is a ‘literal’ of the form<f, a>, wheref is an f-structure tag anda is
a type (of our TLC), thenC(<f, a>) = a.

b. If a formula is of the formA −◦ B, thenC(A −◦ B) = C(A)→C(B).

Thanks to this relationship, we can omit the semantic type information from the glue side,
since it is predictable from that of the meaning side.12

A pairing of a meaning expression with a glue expression of compatible type is called
a ‘meaning constructor’, and the meaning constructors of (21) can be assembled in only one
way, which can be made more familiar-looking to syntacticians by hanging the tree upside-
down, and made more horizontally compact by stacking the meaning and glue expressions
vertically rather than separating them by colons:

12There is however a tradition of writing constructors in a format such asλXY.Like(X, Y ) : g −◦ f , with
content-free lambda-abstractions being used as partial indications of the semantic type on the meaning side,
and no information about the semantic type on the glue side. Isee no point in doing this. In situations where the
comma-separated argument notation is useful, one can use Montague’s convention of treatingf(a1, . . . , an)
as syntactic sugaring forf(an) . . . (a1) (the order-reversal is to respect the traditions used when using the
comma-separated notation, where the most rather than the least active argument tends to come first). We
are also omitting the ‘semantic projection’ from the meaning constructors, for reasons discussed in Andrews
(2004).
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(25) like(Mary)(John)
f

Johne

g

like(Mary)
g −◦ f

Marye

h

likee→e→t

h −◦ g −◦ f

Here we specify the semantic type information only on the meaning sides of the leaves of the
tree, since it is predictable elsewhere; note also that the linear order of sisters isn’t significant.

Therefore, enriching the semantic type information with f-structural ‘locational’ infor-
mation allows the syntactic structure to constrain the assembly of the individual semantic
contributions made by words and perhaps constructions. There are however a few more
points to develop or expand upon before proceeding to apply this approach to our actual
examples.

In the first place, exactly where do the meaning constructorscome from? The answer
is that they come from the lexicon (and perhaps the PS rules),via the standard LFG process
of ‘instantiation’. In the lexicon, meaning-constructorsare listed in ‘uninstantiated’ form,
with functional designators such as ‘↑’ and ‘(↑SUBJ)’ in place of the f-structural tags, so that
the uninstantated form of the constructors of (21) will be:

(26) Johne : ↑

Marye : ↑

Likee→e→t : (↑OBJ)−◦ (↑SUBJ)−◦ ↑

Instantiation is discussed in the basic LFG literature, andbriefly in Andrews (2004), so
needn’t be considered further here.

So the production of the syntactic structure also produces acollection of uninstantiated
meaning-constructors, whose↑ (and perhaps↓) arrows point to various c-structure nodes,
which are then instantiated, and functional designators such as(f SUBJ)resolved in the usual
way. This collection of instiantiated constructors must then be assembled into a tree in
accordance with the rules of linear logic, of which we have sofar only seen−◦-elim, whose
operations bear a (non-coincidental, I think) similarity to External Merge in the Minimalist
Program. Linearity means that each constructor can be used only once, and there is a further
constraint that all must be used, to produce a single tree whose root locates content of typet
(at least for declarative sentences) at the f-structure of the whole utterance.

We are now ready to take on thewarn example. This is a plausible proposal for its
f-structure, where the dotted arc indicates that the two structures it connects are actually the
same structure, linked into the the whole structure at two places:
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(27)

f :





















































SUBJ g:











PRED ‘Pro’
PERS II
NUM SG
CASE NOM











TENSE PAST
PRED ‘Warn(SUBJ, OBJ, XCOMP)’

OBJ h:











PRED ‘Pro’
PERS I
NUM SG
CASE ACC











XCOMP i:

[

SUBJ h:[ ]
PRED ‘Go(SUBJ);

]





















































and these can be its instantiated meaning-constructors, using the analysis of functional con-
trol by arguments proposed by Asudeh (2002), and using convenient abbreviations for the
explications of the verbs:

(28) I : g

you : h

Warn : (h −◦ i) −◦ h −◦ g −◦ f

Leave : h −◦ i

(we continue to ignore tense).

Now the full assembly will look like this in our modified tree format:

(29) warn(go)(I)(YOU)
f

YOUe

g

warn(go)(I)
g −◦ f

Ie

h

warn(go)
h −◦ g −◦ f

goe→t

h −◦ i

warn(e→t)→e→e→t

(h −◦ i) −◦ h −◦ g −◦ f

As discussed by Asudeh, the double appearance of the f-structure tagh in the meaning
constructor forwarn as both antecedent of an embedded implication argument, andas an
argument, allows this f-structure to in effect play two semantic roles in the structure, ‘under-
stood subject’ of the infinitival complement, and ‘object/Warnee’ of the verbwarn. and the
NSM explications compose as required.
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At this point we could say that the basic mission is accomplished: we’ve showed how
to use LFG+Glue to compose explications for the words in the example we have been con-
sidering (and a reasonable range of similar ones). But we’veso far only used the rule of
−◦-elim, and if this was all there was to semantic composition,simpler mechanisms than
glue would be sufficient. Much of the interest in Glue is due toits ability to deal with more
complex assembly issues such as quantifier scope, in which wehave to relate a single NP
in the syntax to two positions in the semantics, one the position appropriate to its semantic
role, the other appropriate to its scope. A very simple example is afforded by the ambiguity
of sentences like (30), which can have either the sense of (a)or (b):

(30) everybody didn’t go

a. it is not the case that everybody went

b. nobody went

Under current LFG, the f-structure for this example (both readings) would be something like:

(31)

f :























SUBJ g:







QUANT ‘Every’
PRED ‘Pro’
HUMAN +







POL NEG
TENSE PAST
PRED ‘Go(SUBJ)’























Like the overt phrase-structure, this f-structure doesn’trepresent the scope facts.

With Glue Semantics, the representation of the scope ambiguities is accomplished by
the meaning-constructors associated with quantifiers, together with how the linear logic de-
ductions work. In currently standard treatment, NL quantifiers are treated as generalized
quantifiers in the sense of Barwise and Cooper (1981) (there are various alternatives under
development). This means that they are viewed as predicatesover intransitive verb mean-
ings, so that their meaning type is(e→t)→t. In an extensional truth-theoretic account, for
example,everybody went is true if and only if the set of ‘goers’ is included in the set ‘every-
body’, which is the set of predicates that are true of all people. More generally, one can say
that they are ‘properties of properties’: the propertyeverybodymay or may not be true of the
propertywent, which may or may not be true of any particular person.

The underlying assumptions of NSM are so different from those of the truth-conditional
approach from which this treatment of quantifiers emerges that analyses are unlikely to trans-
port from one to the other without a great deal of adjustment,if at all, but I think it’s worth
showing how Glue manages the ambiguity in order both to demonstrate some features of
Glue, and also to pose some basic issues that NSM will have to deal with in order to succeed
in this area. Standard constructors for the negative and quantifier would be as follows, with
formal rather than substantive meaning sides:

(32) Negt→t : ↑ −◦ ↑

Everybody(e→t)→t : (↑ −◦ H) −◦ H
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TheNegconstructor applies to content located at the f-structure where the negative marker
introduces the negative polarity feature, so that for example if the f-structure were:

(33)

f :









SUBJ g:
[

PRED ‘John
]

POL NEG
PRED ‘Go(SUBJ)’









then the instantiated constructors would be:

(34) Johne : g

Negt→t : f −◦ f

Goe→t : g −◦ f

and the assembly would be:

(35) Neg(Go(John))
f

Go(John)
f

Goe→t

g −◦ f

Johne

g

Negt→t

f −◦ f

This illustrates how Glue assembly can ‘expand’ a relatively flat f-structure into a more hi-
erarchical pattern of applications of predicates to arguments, an important resource whereby
Glue can deal with some of the problems created by the relative ‘flatness’ of f-structure as
opposed to overt phrase structure. The linear logic property that premises disappear when
used is also useful here, for without it, we might expect the negative to apply multiple times
to whatever the meaning associated with the f-structuref happened to be.

The quantifier constructor has a novel feature, the appearance of the variableH where
we expect an↑ or ↓ arrow. This variable is standardly interpreted as a universal ‘any’ quan-
tifier in the linear logic; it would also be possible to interpret it as a freely instantiable f-
structure variable, that can be identified with any other f-structure produced by the solution
algorithm, or even novel one that isn’t. Remarkably, as shown in Dalrymple et al. (1997),
the principles of the logic will prevent this apparently quite underconstrained scheme from
producing excess readings in classical examples sucn asevery representative of a company
demonstrated a product, where naive ‘quantifier extraction’ techniques tend to produce six
readings, but there are actually only five.

Returning to example (30), the only viable instantiations/(linear) universal quantifier
bindings of theH variable is tof of (31), so that the instantiated meaning-constructors are
effectively:

(36) Everybody(e→t)→t : (g −◦ f) −◦ f

Negt→t : f −◦ f

Goe→t : g −◦ f
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These have two valid glue assemblies, the first using only−◦-elim, which you should be
able to work out at this point, the other using−◦-introduction rule (traditional Hypothetical
Deduction), which we haven’t discussed yet, but turn to now.

The purely logical version of this rule lets us derive a conclusionB from a ‘provisional
assumption’A, and then ‘discharge’ the assumption by deriving the conclusion A −◦ B,
which then no longer depends on the premiseA. The traditional tree formulation of this rule
is:

(37)

[A]i
·
·
·
B

−◦-intri
A −◦ B

where the brackets represent the provisional character of the assumptionA, and the super-
scripts the relationship between the assumption and the deduction step whereby it is dis-
charged.

When labels are added, the provisional premise is labelled with a variable not used in
any other premise, of type compatible with its formula, and in the−◦-elim step, the label of
the derived formulaB (which will contain a free occurrence ofX) is lambda-bound byX
in the conclusion. Adapting this notation to the upside-down tree format in an obvious way,
the derivation of the wide-scope sense of (30) can be depicted like this:

(38) Everybody(λX.Neg(Go(X)))
f

λX.Neg(Go(X))
[g −◦ f ]i

Neg(Go(X))
f

Go(X)
f

Xe

[g]i
Goe→t

g −◦ f

Negt→t

f −◦ f

Everybody(e→t)→t

(g −◦ f) −◦ f

The last (topmost) two steps of this derivation are exactly equivalent to ‘base generating’ the
interpreted output of quantificational NP-raising as described by Kratzer and Heim (1998),
making them somewhat reminiscent of ‘Internal Merge’ in theMinimalist Program.

−◦-elim and−◦-intr constitute the ‘implicational fragment’ of linear logic, which is
sufficient for many interesting glue analyses, although Asudeh (2004) argues for and makes
use of an additional rule of ‘tensor elimination’ which has the effect of binding on two
variables at once. Lev (2005) argues for an alternative analysis of some of these phenomena
which does not require this rule and can be done within the implicational fragment, but the
issues are still open.
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We have now seen how Glue can represent the scope ambiguity, but what about the
actual meanings? Here is an initial proposal. As frequentlymentioned,everybody doesn’t
normally mean everybody in the universe, but all of the people in some restricted domain,
which the speaker can be taken as thinking of. This suggests something like this:

(39) λP e→t. if somebody is one of the people I am thinking about,
thenP (this person)

But it is then not so clear how we should deal with the negation. NOT is one of the cur-
rently standard primitives, but to get decent results for negative sentences under composition
it often seems to be necessary to render it as something likethis is not true: Z, yielding
something like this for the wide-scope reading:

(40) if somebody is one of the people I am thinking about, then

this is not true:

this person did something because this person
wanted to be somewhere else

. . .

And similarly for narrow scope:

(41) this is not true:

if somebody is one of the people I am thinking about, then

this person did something because this person
wanted to be somewhere else

. . .

It is an awkward feature of this approach that we don’t seem tobe able to render English
verbal negation with the NOT primitive alone, but have to drag TRUE into the explications
as well. This could be taken to indicate a problem with this approach to explicating these
constructions, but at least it serves to present some of the issues that NSM must deal with
here.

8 Conclusion

Therefore, we see that the f-structures provide a sort of framework whereby the meanings
encoded in meaning constructors for words can be assembled into meanings for complete
utterances; this technique can also be extended to constructions, by associating meaning
constructors with certain phrase-structure rules as well as with lexical items (Asudeh and
Crouch 2002). However, although we can do this for some constructions, it is clear that
many challenges remain.

As I mentioned at the beginning LFG+Glue is clearly not the only formal theory of
syntax that can be used for this purpose, but the rather traditional nature of the f-structure
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representation means that it is potentially relatively accessible to descriptivists, while the
considerable degree of abstraction from the details of overt sentence form that the f-structures
provides means that the results of investigation of composition can be expected to be reason-
ably transportable between different syntactic frameworks as well as different languages.
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